Figure 5
Figure 5. Terminally differentiated CD16+ NK cells acquire functional capacity after IL-15–mediated preactivation. Distribution of KIR+ (A) and CD16+ (B) NK cells in splenic CD56bright, CD56dim, and CD56− NK-cell subsets of hu-NSG mice, as gated in the top panels of (A) in comparison to isotype control staining or (B) staining on marker negative CD3+ cells (gray shaded histograms). Degranulation (C) and IFN-γ production (D) of unstimulated and preactivated CD16+ and CD16− NK cells after coculture with K562 cells were analyzed. A representative experiment of 2 is shown in panels A and B, while panels C and D represent composite data of 2 independent experiments. Numbers in plots represent frequencies within gates or marker regions.

Terminally differentiated CD16+ NK cells acquire functional capacity after IL-15–mediated preactivation. Distribution of KIR+ (A) and CD16+ (B) NK cells in splenic CD56bright, CD56dim, and CD56 NK-cell subsets of hu-NSG mice, as gated in the top panels of (A) in comparison to isotype control staining or (B) staining on marker negative CD3+ cells (gray shaded histograms). Degranulation (C) and IFN-γ production (D) of unstimulated and preactivated CD16+ and CD16 NK cells after coculture with K562 cells were analyzed. A representative experiment of 2 is shown in panels A and B, while panels C and D represent composite data of 2 independent experiments. Numbers in plots represent frequencies within gates or marker regions.

Close Modal

or Create an Account

Close Modal
Close Modal