Figure 2
Figure 2. The GFP-PLCδ1 PH domain preferentially binds PIP2 on the cytoplasmic face of the plasma membrane of loaded-erythrocyte ghosts. (A) Single optical sections of fluorescence micrographs (60×/1.42 oil objective [Olympus]) of erythrocyte ghosts loaded with recombinant GFP-PLCδ1 PH domain (5 μM) protein. Scale bar equals approximately 5 μm. (B) Membrane association of GFP-PLCδ1 PH domain in loaded ghosts. Ghosts loaded with GFP-PLCδ1 PH domain were lysed and fractionated into membrane and cytoplasmic fractions by centrifugation, separated by SDS-PAGE, and analyzed for recombinant protein by anti-GFP immunoblotting. T, total PLCδ1 PH domain–loaded ghost lysate; C, cytoplasmic fraction; M, membrane fraction; 5 × 107 cells per lane; protein loading equal by Ponceau staining. Purified GFP-PLCδ1 standard is shown at right; nanogram scale. (C) Protease protection assay of GFP-PLCδ1 PH domain in loaded ghosts. Ghosts loaded with GFP-PLCδ1 PH domain were incubated in buffer with or without proteinase K and/or 1% Triton X-100 detergent, then separated and analyzed as in panel B. In addition to anti-GFP immunoblotting, control antibodies to erythrocyte flotillin-1 (flot1; completely protease protected) were also used. C, control; P, proteinase K; T, Triton X-100; P/T, proteinase K and Triton X-100; 2 × 107 cells per lane; protein loading equal by Ponceau staining. (D) In vitro liposome association of GFP PLCδ1 PH domains. Recombinant GFP PLCδ1 PH domain fusion protein was incubated with purified liposomes containing PIP2, PI4P, or PA, separated into a liposome-containing pellet (P) and liposome-depleted supernatant (S) fractions by ultracentrifugation, and immunoblotted for GFP as described in the other panels. Numbers represent the relative ratios of DMPC to PIP2, PI4P, or PA in liposomes (0.1 = 1:20; 0.5 = 1:40; 0.025 = 1:80). *Lane with most PH domain binding of PIP2-containing liposomes.

The GFP-PLCδ1 PH domain preferentially binds PIP2 on the cytoplasmic face of the plasma membrane of loaded-erythrocyte ghosts. (A) Single optical sections of fluorescence micrographs (60×/1.42 oil objective [Olympus]) of erythrocyte ghosts loaded with recombinant GFP-PLCδ1 PH domain (5 μM) protein. Scale bar equals approximately 5 μm. (B) Membrane association of GFP-PLCδ1 PH domain in loaded ghosts. Ghosts loaded with GFP-PLCδ1 PH domain were lysed and fractionated into membrane and cytoplasmic fractions by centrifugation, separated by SDS-PAGE, and analyzed for recombinant protein by anti-GFP immunoblotting. T, total PLCδ1 PH domain–loaded ghost lysate; C, cytoplasmic fraction; M, membrane fraction; 5 × 107 cells per lane; protein loading equal by Ponceau staining. Purified GFP-PLCδ1 standard is shown at right; nanogram scale. (C) Protease protection assay of GFP-PLCδ1 PH domain in loaded ghosts. Ghosts loaded with GFP-PLCδ1 PH domain were incubated in buffer with or without proteinase K and/or 1% Triton X-100 detergent, then separated and analyzed as in panel B. In addition to anti-GFP immunoblotting, control antibodies to erythrocyte flotillin-1 (flot1; completely protease protected) were also used. C, control; P, proteinase K; T, Triton X-100; P/T, proteinase K and Triton X-100; 2 × 107 cells per lane; protein loading equal by Ponceau staining. (D) In vitro liposome association of GFP PLCδ1 PH domains. Recombinant GFP PLCδ1 PH domain fusion protein was incubated with purified liposomes containing PIP2, PI4P, or PA, separated into a liposome-containing pellet (P) and liposome-depleted supernatant (S) fractions by ultracentrifugation, and immunoblotted for GFP as described in the other panels. Numbers represent the relative ratios of DMPC to PIP2, PI4P, or PA in liposomes (0.1 = 1:20; 0.5 = 1:40; 0.025 = 1:80). *Lane with most PH domain binding of PIP2-containing liposomes.

Close Modal

or Create an Account

Close Modal
Close Modal