Figure 5
Figure 5. GPR84 confers a growth advantage on KLSA9M pre-LSCs. (A) Western blot analysis of GPR84 and β-catenin expression in KLSA9M pre-LSCs transduced with GPR84 cDNA or EV, as well as KLSMLL pre-LSCs transduced with EV. (B) Colony-forming assays of KLSA9M pre-LSCs expressing GPR84 cDNA or EV (N = 3). (C) Kaplan-Meier survival curves for mice that received 1 × 106 KLSMLL pre-LSCs expressing EV, KLSA9M pre-LSCs expressing GPR84 cDNA, or EV. (D) Representative flow cytometry plots illustrating in vivo short-term cell proliferation assays of GFP+ KLSA9M pre-LSCs expressing GPR84 or EV 10 days after transplantation (N = 3 independent experiments). BM cells isolated from normal mice were used as a GFP-negative control to set up an appropriate flow cytometric gate.

GPR84 confers a growth advantage on KLSA9M pre-LSCs. (A) Western blot analysis of GPR84 and β-catenin expression in KLSA9M pre-LSCs transduced with GPR84 cDNA or EV, as well as KLSMLL pre-LSCs transduced with EV. (B) Colony-forming assays of KLSA9M pre-LSCs expressing GPR84 cDNA or EV (N = 3). (C) Kaplan-Meier survival curves for mice that received 1 × 106 KLSMLL pre-LSCs expressing EV, KLSA9M pre-LSCs expressing GPR84 cDNA, or EV. (D) Representative flow cytometry plots illustrating in vivo short-term cell proliferation assays of GFP+ KLSA9M pre-LSCs expressing GPR84 or EV 10 days after transplantation (N = 3 independent experiments). BM cells isolated from normal mice were used as a GFP-negative control to set up an appropriate flow cytometric gate.

Close Modal

or Create an Account

Close Modal
Close Modal