Figure 2
Figure 2. Force-probe MD simulations of a wtA2 model with or without a Ca2+ bound at the metal-binding site. (A) Force profiles of force-probe MD simulations of the wtA2 model. The α3-β4 region adopts a loop conformation with or without a Ca2+ ion bound at the site equivalent to the Ca2+-binding site of ssA2. The Ca2+ ion is replaced with a water molecule (left panel) or kept at the binding site (right panel). (B) Selected snapshots of the trajectory of force-probe MD simulations of the wtA2 model bound with a Ca2+ ion. For the A2 domain, the α-helices are colored in pink, the β strands in yellow, and the α3-β4 loop in cyan. The β4 strand is marked. The residues that participate in the formation of the Ca2+-binding site are shown as ball-and-stick models and labeled. The bound Ca2+ is shown as a golden sphere.

Force-probe MD simulations of a wtA2 model with or without a Ca2+ bound at the metal-binding site. (A) Force profiles of force-probe MD simulations of the wtA2 model. The α3-β4 region adopts a loop conformation with or without a Ca2+ ion bound at the site equivalent to the Ca2+-binding site of ssA2. The Ca2+ ion is replaced with a water molecule (left panel) or kept at the binding site (right panel). (B) Selected snapshots of the trajectory of force-probe MD simulations of the wtA2 model bound with a Ca2+ ion. For the A2 domain, the α-helices are colored in pink, the β strands in yellow, and the α3-β4 loop in cyan. The β4 strand is marked. The residues that participate in the formation of the Ca2+-binding site are shown as ball-and-stick models and labeled. The bound Ca2+ is shown as a golden sphere.

Close Modal

or Create an Account

Close Modal
Close Modal