Figure 1
Figure 1. HSC-derived CD56+CD117highCD94− NK cells produce IL-22 on stimulation. (A) HSC-derived NK cultures at day 21, showing heterogeneous CD56 expression. (B-C) Purified CD56+ and CD56− cells were assessed for expression of IL-22 mRNA and protein at rest and after activation with IL-1β (10 ng/mL) and IL-23 (40 ng/mL). (D) FACS at day 28 of culture, showing that the CD56+ cells can be divided into CD117highCD94− and CD117low/−CD94+ fractions. (E-F) CD117highCD94− and CD117low/−CD94+ fractions were FACS-purified and assessed for IL-22 mRNA expression and protein expression at rest and after activation with IL-1β (10 ng/mL) and IL-23 (40 ng/mL). Results are representative of more than 3 donors.

HSC-derived CD56+CD117highCD94 NK cells produce IL-22 on stimulation. (A) HSC-derived NK cultures at day 21, showing heterogeneous CD56 expression. (B-C) Purified CD56+ and CD56 cells were assessed for expression of IL-22 mRNA and protein at rest and after activation with IL-1β (10 ng/mL) and IL-23 (40 ng/mL). (D) FACS at day 28 of culture, showing that the CD56+ cells can be divided into CD117highCD94 and CD117low/−CD94+ fractions. (E-F) CD117highCD94 and CD117low/−CD94+ fractions were FACS-purified and assessed for IL-22 mRNA expression and protein expression at rest and after activation with IL-1β (10 ng/mL) and IL-23 (40 ng/mL). Results are representative of more than 3 donors.

Close Modal

or Create an Account

Close Modal
Close Modal