Fig. 2.
Fig. 2. Activation state of Faslo and Fashi thymocytes. Freshly isolated thymocytes were stained with anti-Fas antibody and PE-labeled anti-CD25 or FITC-labeled anti-HLA-DR. (A) In Fas expression analysis, gates were set to define Faslo and Fashi thymocytes. During the acquisition step, events were accumulated in these gates. Analysis of one representative MG patient (anti-AChR antibody titer 33 nmol/L) is shown. In this representative analysis (one of six experiments) the percentage of HLA-DR–expressing or CD25-expressing cells is strikingly higher in Fashi thymocytes than in Faslo thymocytes. (B) Such analyses were performed on 6 controls and 6 MG patients. Data presented are mean ± SEM. The increase in HLA-DR or CD25+ cells in Fashi thymocytes compared with Faslo thymocytes were similar in controls and in MG patients.

Activation state of Faslo and Fashi thymocytes. Freshly isolated thymocytes were stained with anti-Fas antibody and PE-labeled anti-CD25 or FITC-labeled anti-HLA-DR. (A) In Fas expression analysis, gates were set to define Faslo and Fashi thymocytes. During the acquisition step, events were accumulated in these gates. Analysis of one representative MG patient (anti-AChR antibody titer 33 nmol/L) is shown. In this representative analysis (one of six experiments) the percentage of HLA-DR–expressing or CD25-expressing cells is strikingly higher in Fashi thymocytes than in Faslo thymocytes. (B) Such analyses were performed on 6 controls and 6 MG patients. Data presented are mean ± SEM. The increase in HLA-DR or CD25+ cells in Fashi thymocytes compared with Faslo thymocytes were similar in controls and in MG patients.

Close Modal

or Create an Account

Close Modal
Close Modal