Figure 1.
Figure 1. Schematic representation of hematopoietic TFs involved in normal platelet genesis. RUNX1, GFI1B, ETV6, EVI1, and HOXA11 are expressed in HSCs. As denoted above black arrows, various hematopoietic TFs, in combination with TPO stimulation, function to promote HSC differentiation, MK lineage commitment and maturation, and proplatelet formation and platelet release. Proplatelet formation and platelet release are also driven by RUNX1 and FLI1 silencing of ANKRD26. TPO is shown by green dots. EP, erythroid progenitor; ETS, E-twenty-six; ETV6, ETS variant 6; EVI1, ecotropic viral integration site 1; FLI1, Fli-1 proto-oncogene, ETS transcription factor; GATA1, GATA-binding protein 1; GF1IB, growth factor independent 1B transcriptional repressor; HOXA11, homeobox A11; ME-P, MK-erythroid progenitor; MK-P, MK progenitor; P, phosphorylated; RUNX1, runt-related transcription factor 1.

Schematic representation of hematopoietic TFs involved in normal platelet genesis. RUNX1, GFI1B, ETV6, EVI1, and HOXA11 are expressed in HSCs. As denoted above black arrows, various hematopoietic TFs, in combination with TPO stimulation, function to promote HSC differentiation, MK lineage commitment and maturation, and proplatelet formation and platelet release. Proplatelet formation and platelet release are also driven by RUNX1 and FLI1 silencing of ANKRD26. TPO is shown by green dots. EP, erythroid progenitor; ETS, E-twenty-six; ETV6, ETS variant 6; EVI1, ecotropic viral integration site 1; FLI1, Fli-1 proto-oncogene, ETS transcription factor; GATA1, GATA-binding protein 1; GF1IB, growth factor independent 1B transcriptional repressor; HOXA11, homeobox A11; ME-P, MK-erythroid progenitor; MK-P, MK progenitor; P, phosphorylated; RUNX1, runt-related transcription factor 1.

Close Modal

or Create an Account

Close Modal
Close Modal