Figure 2
The liver responds to iron signals to regulate hepcidin production. Hepatic iron accumulation leads to increased BMP6 production, which is an important ligand for the HJV/BMP receptor complex on the surface of hepatocytes. The activation of the BMP signaling pathway leads to nuclear translocation of SMAD1/5/8 with SMAD4 and subsequent activation of hepcidin transcription. Circulating iron–bound transferrin (Fe3+-Tf) also stimulates hepcidin production by activating the BMP/HJV/SMAD signaling pathway. However, the exact details of the necessary and sufficient interactions of iron-bound transferrin with transferrin receptor 1 (TFR1), transferrin receptor 2 (TFR2), and HFE at the surface of hepatocytes to stimulate hepcidin expression are still unknown. Other modulators such as matriptase-2 are important for regulating iron-induced signals that affect hepcidin production.

The liver responds to iron signals to regulate hepcidin production. Hepatic iron accumulation leads to increased BMP6 production, which is an important ligand for the HJV/BMP receptor complex on the surface of hepatocytes. The activation of the BMP signaling pathway leads to nuclear translocation of SMAD1/5/8 with SMAD4 and subsequent activation of hepcidin transcription. Circulating iron–bound transferrin (Fe3+-Tf) also stimulates hepcidin production by activating the BMP/HJV/SMAD signaling pathway. However, the exact details of the necessary and sufficient interactions of iron-bound transferrin with transferrin receptor 1 (TFR1), transferrin receptor 2 (TFR2), and HFE at the surface of hepatocytes to stimulate hepcidin expression are still unknown. Other modulators such as matriptase-2 are important for regulating iron-induced signals that affect hepcidin production.

Close Modal

or Create an Account

Close Modal
Close Modal