Figure 4
Figure 4. The loss of both MBP-1 and EPX gene expression in MBP-1−/−/EPX−/− mice significantly reduces the steady-state number of eosinophils and their progenitors in the bone marrow. (A) Flow cytometric assessments of bone marrow–derived leukocytes from individual mice showed that the number of eosinophils (ie, CCR3+ and IL-5Rα+ cells) is significantly lower in MBP-1−/−/EPX−/− mice relative to either wild-type controls or MBP-1−/− or EPX−/− single knockout animals. *P < .05. (B) Immunohistochemical staining (dark-staining cells) of femur sections using a rat mAb (MT3 25.1.1) recognizing Ear-1, -2, -6/7, and -5/11 confirmed our flow cytometric data showing that the number of Ear+ eosinophils in MBP-1−/−/EPX−/− mice was significantly lower than the number of eosinophils observed in the marrow of either wild-type, MBP-1−/−, or EPX−/− mice. However, unlike the marrow of mice devoid of eosinophils and their progenitors (ie, PHIL mice), the marrow of MBP-1−/−/EPX−/− mice maintained a finite steady-state population of these eosinophil lineage-committed cells. Isotype control: rat normal serum immunoglobulin G (IgG). Scale bar = 100 µm.

The loss of both MBP-1 and EPX gene expression in MBP-1−/−/EPX−/− mice significantly reduces the steady-state number of eosinophils and their progenitors in the bone marrow. (A) Flow cytometric assessments of bone marrow–derived leukocytes from individual mice showed that the number of eosinophils (ie, CCR3+ and IL-5Rα+ cells) is significantly lower in MBP-1−/−/EPX−/− mice relative to either wild-type controls or MBP-1−/− or EPX−/− single knockout animals. *P < .05. (B) Immunohistochemical staining (dark-staining cells) of femur sections using a rat mAb (MT3 25.1.1) recognizing Ear-1, -2, -6/7, and -5/11 confirmed our flow cytometric data showing that the number of Ear+ eosinophils in MBP-1−/−/EPX−/− mice was significantly lower than the number of eosinophils observed in the marrow of either wild-type, MBP-1−/−, or EPX−/− mice. However, unlike the marrow of mice devoid of eosinophils and their progenitors (ie, PHIL mice), the marrow of MBP-1−/−/EPX−/− mice maintained a finite steady-state population of these eosinophil lineage-committed cells. Isotype control: rat normal serum immunoglobulin G (IgG). Scale bar = 100 µm.

Close Modal

or Create an Account

Close Modal
Close Modal