Figure 3
Figure 3. Proposal for the mechanism of sequential prothrombin cleavage by prothrombinase. (A) The surface of pseutarin C is shown, with fVa in gray and fXa in cyan and the active site colored red. Prothrombin (yellow cartoon with semitransparent surface) is docked onto the side of fVa, with F1 (Gla-EGF1) binding to the C2 domain. The Pre1 portion of prothrombin (Pre1 surface electrostatic representation as inset) docks onto fVa in a manner that feeds Arg320 (blue) into the active site of fXa while keeping the 271 site (magenta) remote. (B) Cleavage of the 320 site causes the zymogen-to-protease conformational change in the catalytic domain of prothrombin (yielding the active intermediate meizothrombin; right inset) and an altered interaction with the K2 domain (indicated by change from yellow to green). The change in surface properties of meizothrombin (Meizo des F1; inset) result in an adjusted interaction with fVa, and the presentation of Arg271 to the active site of fXa.

Proposal for the mechanism of sequential prothrombin cleavage by prothrombinase. (A) The surface of pseutarin C is shown, with fVa in gray and fXa in cyan and the active site colored red. Prothrombin (yellow cartoon with semitransparent surface) is docked onto the side of fVa, with F1 (Gla-EGF1) binding to the C2 domain. The Pre1 portion of prothrombin (Pre1 surface electrostatic representation as inset) docks onto fVa in a manner that feeds Arg320 (blue) into the active site of fXa while keeping the 271 site (magenta) remote. (B) Cleavage of the 320 site causes the zymogen-to-protease conformational change in the catalytic domain of prothrombin (yielding the active intermediate meizothrombin; right inset) and an altered interaction with the K2 domain (indicated by change from yellow to green). The change in surface properties of meizothrombin (Meizo des F1; inset) result in an adjusted interaction with fVa, and the presentation of Arg271 to the active site of fXa.

Close Modal

or Create an Account

Close Modal
Close Modal