Figure 1
Figure 1. Immune reconstitution of SAP-deficient mice after gene transfer into hematopoietic stem cells. (A) Schematic representation of the SAP-expressing lentiviral construct and the corresponding eGFP control used for the reconstitution of SAP-deficient animals. (B) Flow cytometric analysis of hematopoietic lineages in control and experimental animals 12 weeks after reconstitution. (C) Level of eGFP expression in the blood, bone marrow, spleen, and thymus of all animals at the time of sacrifice. (D) Detection of NKT cells in the thymus of control and reconstituted animals by staining for the TCRVβ receptor and NK1.1 surface marker. Values for individual mice are shown as dots, and the mean of all values is represented by a horizontal line. (E) NK-cell cytotoxic activity measured in a 51Chromium release assay against the radiolabeled murine T lymphoma target cells (RMA/S). Assays were done in triplicate and data shown are mean ± SEM of all values.

Immune reconstitution of SAP-deficient mice after gene transfer into hematopoietic stem cells. (A) Schematic representation of the SAP-expressing lentiviral construct and the corresponding eGFP control used for the reconstitution of SAP-deficient animals. (B) Flow cytometric analysis of hematopoietic lineages in control and experimental animals 12 weeks after reconstitution. (C) Level of eGFP expression in the blood, bone marrow, spleen, and thymus of all animals at the time of sacrifice. (D) Detection of NKT cells in the thymus of control and reconstituted animals by staining for the TCRVβ receptor and NK1.1 surface marker. Values for individual mice are shown as dots, and the mean of all values is represented by a horizontal line. (E) NK-cell cytotoxic activity measured in a 51Chromium release assay against the radiolabeled murine T lymphoma target cells (RMA/S). Assays were done in triplicate and data shown are mean ± SEM of all values.

Close Modal

or Create an Account

Close Modal
Close Modal