Figure 5
Figure 5. Putative mechanism of immune escape of 6pUPD-positive clones. (A) A schematic diagram of 6pUPD, which is thought to result from a recombination between 2 homologous chromosomes, invariably involving 6pter distally. (B) Breakpoint mapping of 6pUPD in different patients, showing a prominent breakpoint cluster within the HLA class I region. Breakpoints in critical cases are shown by arrows. (C) 6pUPD-positive (+) HSCs permanently lose the relevant HLA class I molecule required for the presentation of the putative antigen and are thereby thought to escape destruction by CTLs. The 6pUPD-mediated mechanism for immune escape in AA is also supported by the presence of multiple independent 6pUPD clones affecting the same parental HLA allele in some patients.63

Putative mechanism of immune escape of 6pUPD-positive clones. (A) A schematic diagram of 6pUPD, which is thought to result from a recombination between 2 homologous chromosomes, invariably involving 6pter distally. (B) Breakpoint mapping of 6pUPD in different patients, showing a prominent breakpoint cluster within the HLA class I region. Breakpoints in critical cases are shown by arrows. (C) 6pUPD-positive (+) HSCs permanently lose the relevant HLA class I molecule required for the presentation of the putative antigen and are thereby thought to escape destruction by CTLs. The 6pUPD-mediated mechanism for immune escape in AA is also supported by the presence of multiple independent 6pUPD clones affecting the same parental HLA allele in some patients.63 

Close Modal

or Create an Account

Close Modal
Close Modal