Figure 2
Figure 2. SIRT1−/− BM cells confer stable reconstitution in competitive and serial transplantation experiments. (A) Percentages of CD45.2+ WBCs derived from 2- (left), 6- (middle), and 16 (right)–month-old SIRT1−/− (black) and SIRT1+/+ (gray) donors in the blood of lethally irradiated CD45.1+ recipients, as measured 4, 8, and 16 weeks after transplantation. Dots represent means ± SEM (n = 8-11 per age group). Recipients were transplanted with 2 × 105 whole BM donor cells together with 1 × 105 competitor recipient cells. (B) Percentages of donor-derived cells within B-cell (CD19+), T-cell (CD3+), neutrophil (Gr1+), and monocyte (F4/80+) populations in recipient bloods 16 weeks after transplantation. Each data point represents an individual animal; lines represent means ± SEM. The groups are as described in panel A. (C) Design of the serial transplantation experiment (left). BMs from 3 mice older than 18 months were pooled and transplanted into lethally irradiated CD45.1+ recipients (n = 7) at a dose of 2 × 106 cells without BM rescue cells. Four months later, recipient peripheral blood was analyzed by FACS, followed by harvesting whole BM cells and transplanting them individually into a new set of lethally irradiated hosts (n = 7) at the same cell dose (secondary transplantations). The same procedure was repeated after another 16-week period (tertiary transplantations). Also shown (C right) are survival rates for recipient mice transplanted with SIRT1−/− (black) and SIRT1+/+ (gray) BM cells. Bars represent the percentage of mice surviving at 16 weeks after transplantation. (D) Percentages of CD45.2+ donor cells in each WBC compartment of lethally irradiated CD45.1+ recipients 4 months after primary (left), secondary (middle), and tertiary (right) transplantation; each data point represents an individual animal; lines represent means ± SEM (n = 7 per group). The fraction of circulating donor cells gradually decreases during subsequent transplantations, indicating that donor cells are competing with the recipient cells that have survived irradiation.

SIRT1−/− BM cells confer stable reconstitution in competitive and serial transplantation experiments. (A) Percentages of CD45.2+ WBCs derived from 2- (left), 6- (middle), and 16 (right)–month-old SIRT1−/− (black) and SIRT1+/+ (gray) donors in the blood of lethally irradiated CD45.1+ recipients, as measured 4, 8, and 16 weeks after transplantation. Dots represent means ± SEM (n = 8-11 per age group). Recipients were transplanted with 2 × 105 whole BM donor cells together with 1 × 105 competitor recipient cells. (B) Percentages of donor-derived cells within B-cell (CD19+), T-cell (CD3+), neutrophil (Gr1+), and monocyte (F4/80+) populations in recipient bloods 16 weeks after transplantation. Each data point represents an individual animal; lines represent means ± SEM. The groups are as described in panel A. (C) Design of the serial transplantation experiment (left). BMs from 3 mice older than 18 months were pooled and transplanted into lethally irradiated CD45.1+ recipients (n = 7) at a dose of 2 × 106 cells without BM rescue cells. Four months later, recipient peripheral blood was analyzed by FACS, followed by harvesting whole BM cells and transplanting them individually into a new set of lethally irradiated hosts (n = 7) at the same cell dose (secondary transplantations). The same procedure was repeated after another 16-week period (tertiary transplantations). Also shown (C right) are survival rates for recipient mice transplanted with SIRT1−/− (black) and SIRT1+/+ (gray) BM cells. Bars represent the percentage of mice surviving at 16 weeks after transplantation. (D) Percentages of CD45.2+ donor cells in each WBC compartment of lethally irradiated CD45.1+ recipients 4 months after primary (left), secondary (middle), and tertiary (right) transplantation; each data point represents an individual animal; lines represent means ± SEM (n = 7 per group). The fraction of circulating donor cells gradually decreases during subsequent transplantations, indicating that donor cells are competing with the recipient cells that have survived irradiation.

Close Modal

or Create an Account

Close Modal
Close Modal