Figure 1
Figure 1. Mechanics of cytotoxic function revealed by HLH-associated gene mutations. HLH-associated genetic abnormalities (in the indicated genes) may affect granule-dependent lymphocyte cytotoxicity by impairing trafficking, docking, priming for exocytosis, or membrane fusion of cytolytic granules. The function of this pathway may also be severely impaired by loss of functional perforin, the key delivery molecule for proapoptotic granzymes. Diverse mutations in this pathway all give rise to similar clinical phenotypes (albeit of variable severity). Lyst (the gene affected in Chediak-Higashi syndrome) is not portrayed because its function is not entirely clear, although it appears to play an important role in the maintenance of normally sized (and functional) cytolytic granules.

Mechanics of cytotoxic function revealed by HLH-associated gene mutations. HLH-associated genetic abnormalities (in the indicated genes) may affect granule-dependent lymphocyte cytotoxicity by impairing trafficking, docking, priming for exocytosis, or membrane fusion of cytolytic granules. The function of this pathway may also be severely impaired by loss of functional perforin, the key delivery molecule for proapoptotic granzymes. Diverse mutations in this pathway all give rise to similar clinical phenotypes (albeit of variable severity). Lyst (the gene affected in Chediak-Higashi syndrome) is not portrayed because its function is not entirely clear, although it appears to play an important role in the maintenance of normally sized (and functional) cytolytic granules.

Close Modal

or Create an Account

Close Modal
Close Modal