Figure 1
Figure 1. CLL proliferation in NSG mice. (A) Retro-orbital sinus bleeding was done at 2-week intervals. CLL cells only proliferate in presence of human hematopoietic elements. Representative example of 9 CLL samples, with a minimum of 29 mice per group (supplemental Table 2). Histograms only show CFSE+ cells. (B) hMSCs are not necessary for CLL proliferation because virtually identical CFSE dilution patterns are seen in the presence or absence of transferred hMSCs. Representative example of 4 CLL samples with a minimum of 10 mice per group (supplemental Table 2) is shown. (C) Early after CLL transfer, most B cells in PB are CFSE−, deriving from transplanted hCD34+ cells (supplemental Figure 2). (D) Late after CLL transfer, a relatively selective loss of CFSE− B cells occurs; remaining B cells are mostly CFSE+ and of leukemic origin (supplemental Figure 2).

CLL proliferation in NSG mice. (A) Retro-orbital sinus bleeding was done at 2-week intervals. CLL cells only proliferate in presence of human hematopoietic elements. Representative example of 9 CLL samples, with a minimum of 29 mice per group (supplemental Table 2). Histograms only show CFSE+ cells. (B) hMSCs are not necessary for CLL proliferation because virtually identical CFSE dilution patterns are seen in the presence or absence of transferred hMSCs. Representative example of 4 CLL samples with a minimum of 10 mice per group (supplemental Table 2) is shown. (C) Early after CLL transfer, most B cells in PB are CFSE, deriving from transplanted hCD34+ cells (supplemental Figure 2). (D) Late after CLL transfer, a relatively selective loss of CFSE B cells occurs; remaining B cells are mostly CFSE+ and of leukemic origin (supplemental Figure 2).

Close Modal

or Create an Account

Close Modal
Close Modal