Figure 1
Figure 1. Numbers of positive and negative LCLs required for successful mHag mapping. The target locus was assumed to be uniquely identified, if the expected χ2 value for the target SNP (f̂(i,j), see Document S1) exceeded the upper 1 percentile point of the maximum χ2 values in 10 000 simulated case-control panels (g(i,j)P=.01). Combinations of the numbers of mHag+ (vertical coordinates) and mHag− (horizontal coordinates) samples satisfying the above condition are shown in color gradients corresponding to different max r2 values between the target SNP and one or more nearby Phase II HapMap SNPs (r2max), ranging from 0.4 to 1.0. Calculations were made for 3 HapMap population panels, CHB + JPT (top), YRI (middle), and CEU (bottom) and for different false positive and negative rates, fP = fN = 0 (left), fP = 0.1,fN ≅ 0 (middle), and fP = 0.1,fN = 0.05 (right), considering the very low false negative assays for CRAs.

Numbers of positive and negative LCLs required for successful mHag mapping. The target locus was assumed to be uniquely identified, if the expected χ2 value for the target SNP ((i,j), see Document S1) exceeded the upper 1 percentile point of the maximum χ2 values in 10 000 simulated case-control panels (g(i,j)P=.01). Combinations of the numbers of mHag+ (vertical coordinates) and mHag (horizontal coordinates) samples satisfying the above condition are shown in color gradients corresponding to different max r2 values between the target SNP and one or more nearby Phase II HapMap SNPs (r2max), ranging from 0.4 to 1.0. Calculations were made for 3 HapMap population panels, CHB + JPT (top), YRI (middle), and CEU (bottom) and for different false positive and negative rates, fP = fN = 0 (left), fP = 0.1,fN ≅ 0 (middle), and fP = 0.1,fN = 0.05 (right), considering the very low false negative assays for CRAs.

Close Modal

or Create an Account

Close Modal
Close Modal