Figure 6.
Figure 6. RBC adhesion is dependent on immobilized ligand density. Immobilized ligand density was varied to measure the effect on RBC adhesion in centrifugation. (A) Human RBCs adhere to human SIRPα1ex-coated wells with half-max adhesion at C50 = 1670 sites/μm2. Inset shows log scale with the average physiologic range of SIRPα1ex on various phagocytes, per Table 3. (B) Pig RBCs adhere to human SIRPα1ex-coated wells more tightly than human RBCs. (C) Human RBCs adhere more strongly to B6H12 antibody-coated wells than to human SIRPα1ex. Averages (± SEM) of % area covered by RBCs after centrifugation from multiple experiments are shown and the ligand density at half-maximal adhesion (C50) was determined by data fit. Note that SIRPα1 immobilized here prevents clustering and limits avidity effects, consistent with the low Hill coefficients. Error bars represent plus or minus 1 SEM from multiple experiments.

RBC adhesion is dependent on immobilized ligand density. Immobilized ligand density was varied to measure the effect on RBC adhesion in centrifugation. (A) Human RBCs adhere to human SIRPα1ex-coated wells with half-max adhesion at C50 = 1670 sites/μm2. Inset shows log scale with the average physiologic range of SIRPα1ex on various phagocytes, per Table 3. (B) Pig RBCs adhere to human SIRPα1ex-coated wells more tightly than human RBCs. (C) Human RBCs adhere more strongly to B6H12 antibody-coated wells than to human SIRPα1ex. Averages (± SEM) of % area covered by RBCs after centrifugation from multiple experiments are shown and the ligand density at half-maximal adhesion (C50) was determined by data fit. Note that SIRPα1 immobilized here prevents clustering and limits avidity effects, consistent with the low Hill coefficients. Error bars represent plus or minus 1 SEM from multiple experiments.

Close Modal

or Create an Account

Close Modal
Close Modal