Fig. 4.
KIR-epitope mismatch in haplotype-mismatched stem cell transplantation.
(A) In this example, donor and recipient are HLA haplotype–mismatched and are KIR-epitope mismatched at the HLA-C locus. The donor NK cell clones expressing KIR2DL1 recognize and are inhibited by an epitope shared by the group 2 HLA-C alleles (HLA-Cw2, 4, 5, and 6). The recipient's leukemic blasts express HLA-Cw3, a member of the group 1 HLA-C alleles, and are, therefore, not recognized by the donor's KIR2DL1, and activation of donor NK cell occurs with leukemic cell lysis. (B) Here, donor and recipient are haplotype-mismatched, but express HLA-C alleles of the same supertype group 2 (HLA-Cw2, 4, 5, and 6). Therefore, donor NK cell clones expressing the inhibitory KIR2DL1 recognize a “self-epitope” (HLA-Cw4) on the recipient's cells with inhibition of lysis of leukemic blasts. KIR epitope mismatching exerts another level of graft alloreactivity and a potent GVL effect.122