Figure 1
Figure 1. Expression of SCF by various murine and human tumor cell lines from multiple tissue origins and establishment of SCF-silenced tumor clones. (A) SCF expression in various murine tumor cell lines (colon cancer: MCA26, MC38; breast cancer: JC, 4T1; melanoma: B16). (B) SCF expression in various human tumor cell lines (colon cancer: HCT15, SW620, DLD-1, Colo205; breast cancer: MDA-MB435). Total RNAs were prepared from the murine and human tumor cell lines and SCF mRNA expressions were analyzed by RT-PCR. (C) SCF expression in SCF-silenced MCA26 clone and in control mock-transfected clone. Multiple stable SCF knockdown and mock-transfected control MCA26 clones were established as described in “Methods.” RNAs were prepared from representative clones and SCF expressions were analyzed by RT-PCR. (D) The protein expression of SCF in mock-transfected control and SCF-silenced MCA26 clones. Cell lysates were prepared and SCF concentration was measured by ELISA.

Expression of SCF by various murine and human tumor cell lines from multiple tissue origins and establishment of SCF-silenced tumor clones. (A) SCF expression in various murine tumor cell lines (colon cancer: MCA26, MC38; breast cancer: JC, 4T1; melanoma: B16). (B) SCF expression in various human tumor cell lines (colon cancer: HCT15, SW620, DLD-1, Colo205; breast cancer: MDA-MB435). Total RNAs were prepared from the murine and human tumor cell lines and SCF mRNA expressions were analyzed by RT-PCR. (C) SCF expression in SCF-silenced MCA26 clone and in control mock-transfected clone. Multiple stable SCF knockdown and mock-transfected control MCA26 clones were established as described in “Methods.” RNAs were prepared from representative clones and SCF expressions were analyzed by RT-PCR. (D) The protein expression of SCF in mock-transfected control and SCF-silenced MCA26 clones. Cell lysates were prepared and SCF concentration was measured by ELISA.

Close Modal

or Create an Account

Close Modal
Close Modal