Table 4.

ATM mutations in CLL patients with type B p53 dysfunction

CaseMutationPredicted codon changePresence of mutation at DNA levelOther changes
404 delC Frameshift at 135 Yes 6795 C→T (silent F→F) 
 1426 insA Frameshift at 475 Yes  
3848 T→C 1283 L→P ND  
 5945 A→C 1982 Q→P ND  
19 IVS7-4delT Not clear4-150 Yes  
 IVS11-2insT Not clear4-150 Yes  
 7205 A→G 2402 E→G Yes  
24 2875 del2nt Frameshift at 959 ND 4473 C→T (silent F→F)  
35 5188 C→T 1730 R→stop ND  
 6056 A→G 2019 Y→C ND  
36 5134 T→A 1712 F→I ND  
40 8535 del5nt 2845 W→stop Yes  
CaseMutationPredicted codon changePresence of mutation at DNA levelOther changes
404 delC Frameshift at 135 Yes 6795 C→T (silent F→F) 
 1426 insA Frameshift at 475 Yes  
3848 T→C 1283 L→P ND  
 5945 A→C 1982 Q→P ND  
19 IVS7-4delT Not clear4-150 Yes  
 IVS11-2insT Not clear4-150 Yes  
 7205 A→G 2402 E→G Yes  
24 2875 del2nt Frameshift at 959 ND 4473 C→T (silent F→F)  
35 5188 C→T 1730 R→stop ND  
 6056 A→G 2019 Y→C ND  
36 5134 T→A 1712 F→I ND  
40 8535 del5nt 2845 W→stop Yes  

Tumor cells from the 7 patients with type B p53 dysfunction were subjected to ATM mutation analysis. Eight overlappingATM fragments were obtained for each patient and analyzed by both REF and sequencing of the complete coding region of theATM gene. Mutations were confirmed at the DNA level where indicated. Nucleotide positions relate to cDNA and are numbered from the ATG codon. ND, not done.

F4-150

Two of the mutations in patient 19 were identified at the DNA level only. Their consequences at the RNA and protein levels cannot, therefore, be entirely predicted. However, both errors are located at the intron/exon boundary, and it is likely that they result in the skipping of exons 8 and 12, respectively.