Multivariable Cox regression analysis of TFS and OS (Cox proportional hazards regression model)
Predictor . | Training dataset (quantitative PCR data) . | |||||
---|---|---|---|---|---|---|
TFS . | OS . | |||||
HR . | 95% CI . | P . | HR . | 95% CI . | P . | |
miR-155 (high vs low) | 2.3 | 1.1-4.6 | .02 | 3.4 | 1.0-11.1 | .04 |
ZAP-70 (positive vs negative) | 1.7 | 0.9-3.4 | .11 | 3.2 | 0.9-11.0 | .07 |
IGHV (unmutated vs mutated) | 1.8 | 0.9-3.6 | .09 | 7.0 | 1.8-27.8 | .006 |
Validation dataset (microarray data) | ||||||
TFS | OS | |||||
HR | 95% CI | P | HR | 95% CI | P | |
miR-155 (high vs low) | 1.5 | 1.0-2.2 | .03 | 2.2 | 1.1-4.5 | .03 |
ZAP-70 (positive vs negative) | 1.4 | 0.8-2.5 | .23 | 1.4 | 0.6-3.3 | .48 |
IGHV (unmutated vs mutated) | 2.6 | 1.4-4.7 | .002 | 3.0 | 1.1-8.0 | .03 |
Predictor . | Training dataset (quantitative PCR data) . | |||||
---|---|---|---|---|---|---|
TFS . | OS . | |||||
HR . | 95% CI . | P . | HR . | 95% CI . | P . | |
miR-155 (high vs low) | 2.3 | 1.1-4.6 | .02 | 3.4 | 1.0-11.1 | .04 |
ZAP-70 (positive vs negative) | 1.7 | 0.9-3.4 | .11 | 3.2 | 0.9-11.0 | .07 |
IGHV (unmutated vs mutated) | 1.8 | 0.9-3.6 | .09 | 7.0 | 1.8-27.8 | .006 |
Validation dataset (microarray data) | ||||||
TFS | OS | |||||
HR | 95% CI | P | HR | 95% CI | P | |
miR-155 (high vs low) | 1.5 | 1.0-2.2 | .03 | 2.2 | 1.1-4.5 | .03 |
ZAP-70 (positive vs negative) | 1.4 | 0.8-2.5 | .23 | 1.4 | 0.6-3.3 | .48 |
IGHV (unmutated vs mutated) | 2.6 | 1.4-4.7 | .002 | 3.0 | 1.1-8.0 | .03 |