Table 2

Class prediction results using 3 miRNA biomarkers

Phenotypic classMicroarray
Quantitative RT-PCR
SVM, no. (%)RF, no. (%)LDA, no. (%)TotalSVM, no. (%)RF, no. (%)LDA, no. (%)Total
ET 24 (88.9) 24 (88.9) 25 (92.5) 27 9 (90) 9 (90) 9 (90) 10 
NO 30 (100) 25 (83.3) 29 (96.7) 30 9 (90) 10 (100) 10 (100) 10 
Average 54 (94.7) 49 (86.0) 54 (94.7) 57 18 (90) 19 (95) 19 (95) 20 
Phenotypic classMicroarray
Quantitative RT-PCR
SVM, no. (%)RF, no. (%)LDA, no. (%)TotalSVM, no. (%)RF, no. (%)LDA, no. (%)Total
ET 24 (88.9) 24 (88.9) 25 (92.5) 27 9 (90) 9 (90) 9 (90) 10 
NO 30 (100) 25 (83.3) 29 (96.7) 30 9 (90) 10 (100) 10 (100) 10 
Average 54 (94.7) 49 (86.0) 54 (94.7) 57 18 (90) 19 (95) 19 (95) 20 

Statistical classifiers were used to assign phenotypic class (ET or NO) based on microarray (N = 57) or quantitative RT-PCR (N = 20) expression profiles using the 3-member miRNA list (miR 10a, miR 148a, and miR 490 5p). Statistical classifiers used include SVM (Support vector machine), RF (Random Forests), and LDA (linear discriminant analysis).

Close Modal

or Create an Account

Close Modal
Close Modal