Table 1

Experimental strategies to optimize vaccine T-cell memory

ApproachCD8 T-cell memory
References
TemTcm
Heterologous prime boost*   58  
    DNA prime viral vector boost ++ ++ 61, 101,–103  
    Multiple heterologous recombinant viral vector +++ ++ 104,,–107  
    Mucosal heterologous prime boost +++ ++ 61, 108  
    Persistent replicating vectors +++ 9, 109  
    Concurrent heterologous vaccination ++ ++  
Maximize CD4+-proficient help    
    Epitope enhancement, CD40L, agonist CD27 Ab ++ +++ 97, 98, 100, 110  
Cytokines and immunomodulatory molecules    
    IL-12 +++ 111  
    IL-7 ++ +++ 89, 90  
    IL-15 ++ ++ 112,–114  
    IL-7 or IL-15 plus IL-21 ++ 94, 95  
    α-galactosylceramide (αGalCer) activation of NKT cell type I +++ ++ 115  
    Synergistic TLR combinations in prime boost +++ 116, 117  
    Dendritic cell targeting combined with synergistic TLR ligands +++ ++  
    Wnt 3a or GSK3β inhibitors  Tscm 54  
Provide effective costimulation    
    TNFSF: 41BBL, OX40L, CD70 ++ ++ 118, 119  
Block negative costimulation    
    Anti–CTLA-4, anti–BTLA-4, anti-PD1 +++ ++ 120, 121  
Push-pull approaches    
    GM-CSF and CD40L, plus IL-13Rα2–Fc +++ +++ 97  
    41BBL plus anti–CTLA-4, +++ +++ 119  
    TLR combinations plus anti–IL-10 +++  
Dendritic cell immunization (Flt3L in vitro expansion)   34  
    TLR 3 plus TLR7/8 activation +++ 116, 122  
    Adenovirus transfection ++ ++ 123  
    miRNA–SOCS-1 inhibition ++  
Repeated immunization at short intervals with multiepitope fusion peptides (Bacillus anthracis lethal factor Lfn) plus protective antigen (PA) ++ ++ 59  
ApproachCD8 T-cell memory
References
TemTcm
Heterologous prime boost*   58  
    DNA prime viral vector boost ++ ++ 61, 101,–103  
    Multiple heterologous recombinant viral vector +++ ++ 104,,–107  
    Mucosal heterologous prime boost +++ ++ 61, 108  
    Persistent replicating vectors +++ 9, 109  
    Concurrent heterologous vaccination ++ ++  
Maximize CD4+-proficient help    
    Epitope enhancement, CD40L, agonist CD27 Ab ++ +++ 97, 98, 100, 110  
Cytokines and immunomodulatory molecules    
    IL-12 +++ 111  
    IL-7 ++ +++ 89, 90  
    IL-15 ++ ++ 112,–114  
    IL-7 or IL-15 plus IL-21 ++ 94, 95  
    α-galactosylceramide (αGalCer) activation of NKT cell type I +++ ++ 115  
    Synergistic TLR combinations in prime boost +++ 116, 117  
    Dendritic cell targeting combined with synergistic TLR ligands +++ ++  
    Wnt 3a or GSK3β inhibitors  Tscm 54  
Provide effective costimulation    
    TNFSF: 41BBL, OX40L, CD70 ++ ++ 118, 119  
Block negative costimulation    
    Anti–CTLA-4, anti–BTLA-4, anti-PD1 +++ ++ 120, 121  
Push-pull approaches    
    GM-CSF and CD40L, plus IL-13Rα2–Fc +++ +++ 97  
    41BBL plus anti–CTLA-4, +++ +++ 119  
    TLR combinations plus anti–IL-10 +++  
Dendritic cell immunization (Flt3L in vitro expansion)   34  
    TLR 3 plus TLR7/8 activation +++ 116, 122  
    Adenovirus transfection ++ ++ 123  
    miRNA–SOCS-1 inhibition ++  
Repeated immunization at short intervals with multiepitope fusion peptides (Bacillus anthracis lethal factor Lfn) plus protective antigen (PA) ++ ++ 59  
*

Although DNA prime and recombinant viral vector boost regimens induce enhanced cell-mediated and humoral immune responses in preclinical models, the results have not yet translated to clinical use. Ongoing efforts to develop new vaccine delivery platforms including DNA electroporation are moving forward toward clinical trial.124 

The cultured ELISPOT assay provides a more sensitive method to enumerate antigen-specific cells not detected in overnight ex vivo assays. This assay may better reveal long-term CD8+ T-cell memory responses achieved by prime boost and highlights differences in measuring human CD4+ and CD8+ T-cell memory.125 

Close Modal

or Create an Account

Close Modal
Close Modal