Table 3.

Recommendations for future prognostic studies

ApproachesTopicAreaTypeSpecifics
To do Statistical approaches Model development and validation Methods used C-statistic/AUC 
    Positive and negative predictive values 
    Brier scores 
    Net Reclassification Index 
 New investigation areas Novel prognostic factors Patient factors Micro-RNAs 
    SNPs 
    Organ-specific biomarkers 
    Sarcopenia/muscle mass 
    Validated predictive and brief battery of geriatric assessment tools 
  Newly designed models Patient factors CHARM 
   Disease factors DRI updated with molecular and MRD data 
   Transplant factors Appraisal of complexity of different donor types and HLA-matching degrees 
  Novel statistical methods Cubic splines  
   Machine learning and artificial intelligence The least absolute shrinkage and selection operator and object-oriented regression
FIS
GBM
Bayesian belief networks
Markov models 
   Principal component analysis and joint decomposition regression  
  Novel methodological approaches Reversibility of prognostic factors Designing dynamic models that provide different prognostic estimates depending on timing in patient’s treatment journey 
   Decision curve analysis Net benefit evaluations for prediction models 
 New specialty Prognostication Oncology—palliative Trained investigators/MDs 
Not to do Validation Studies Model performances Comparing models from different prognostic areas 
    Small sample studies 
    Different diagnoses 
    Different transplant settings 
 Practice Clinical Counseling Ignoring prognostic data 
    Using physician perception alone 
    Unilateral decision in complicated situations 
ApproachesTopicAreaTypeSpecifics
To do Statistical approaches Model development and validation Methods used C-statistic/AUC 
    Positive and negative predictive values 
    Brier scores 
    Net Reclassification Index 
 New investigation areas Novel prognostic factors Patient factors Micro-RNAs 
    SNPs 
    Organ-specific biomarkers 
    Sarcopenia/muscle mass 
    Validated predictive and brief battery of geriatric assessment tools 
  Newly designed models Patient factors CHARM 
   Disease factors DRI updated with molecular and MRD data 
   Transplant factors Appraisal of complexity of different donor types and HLA-matching degrees 
  Novel statistical methods Cubic splines  
   Machine learning and artificial intelligence The least absolute shrinkage and selection operator and object-oriented regression
FIS
GBM
Bayesian belief networks
Markov models 
   Principal component analysis and joint decomposition regression  
  Novel methodological approaches Reversibility of prognostic factors Designing dynamic models that provide different prognostic estimates depending on timing in patient’s treatment journey 
   Decision curve analysis Net benefit evaluations for prediction models 
 New specialty Prognostication Oncology—palliative Trained investigators/MDs 
Not to do Validation Studies Model performances Comparing models from different prognostic areas 
    Small sample studies 
    Different diagnoses 
    Different transplant settings 
 Practice Clinical Counseling Ignoring prognostic data 
    Using physician perception alone 
    Unilateral decision in complicated situations 

CHARM, comprehensive health assessment risk model; FIS, fuzzy inference system; GBM; gradient boosting machine; SNPs, single nucleotide polymorphisms.

Close Modal

or Create an Account

Close Modal
Close Modal