Table 1.

Main functions embedded in FlowCT and their application

Embedded functionsUtility
Quality control   
 flowAI flow_auto_qc Removes low-quality events by evaluating flow rate, signal acquisition, and dynamic range. 
Marker normalization   
 flowStats gaussNorm & warpSet Normalizes flow cytometry data sets by aligning high-density regions (ie, landmarks or peaks) for each channel. 
 Seurat SelectIntegrationFeatures & IntegrateData Identifies anchors between pairs of data sets and uses them to remove confounding factors. 
 harmony HarmonyMatrix Corrects batch effects through a maximum diversity algorithm (ie, soft k-means) and a mixture model–based linear correction. 
Automatic clustering   
 FlowSOM BuildSOM & ConsensusClusterPlus Creates clusters from flow cytometry data sets based on self-organizing map (SOM) and minimal spanning trees (MSTs). 
 PARC PARC Identifies single-cell clusters through a combination of graph-based clustering and pruning, coupled with the Leiden community-detection algorithm. 
 Rphenograph Rphenograph Clusters single cells by using the Louvain method based on a previous phenotypically defined graph. 
 Seurat FindNeighbors & FindClusters Finds single-cell communities based on k-nearest neighbor (KNN) graphs and clustering via Louvain or smart local moving (SLM) algorithms. 
Dimensionality reduction   
 Rtsne Rtsne Calculates t-distributed stochastic neighbor embedding (t-SNE). 
 uwot tumap Calculates uniform manifold approximation and projection (UMAP). 
 densvis densmap & densne Produces lower-dimensional embeddings (t-SNE- and UMAP-based) preserving the density of cells. 
Machine learning   
 biosigner biosign Features selection by running partial least squares-discriminant analysis (PLS-DA), random forest, and support vector machine (SVM) simultaneously (all methods as binary classifiers). 
 randomForestSRC rfsrc Selects immune populations based on random forest building and incorporates survival information. 
 SurvBoost boosting_core Detects more relevant populations through gradient boosting algorithm and includes survival data. 
Embedded functionsUtility
Quality control   
 flowAI flow_auto_qc Removes low-quality events by evaluating flow rate, signal acquisition, and dynamic range. 
Marker normalization   
 flowStats gaussNorm & warpSet Normalizes flow cytometry data sets by aligning high-density regions (ie, landmarks or peaks) for each channel. 
 Seurat SelectIntegrationFeatures & IntegrateData Identifies anchors between pairs of data sets and uses them to remove confounding factors. 
 harmony HarmonyMatrix Corrects batch effects through a maximum diversity algorithm (ie, soft k-means) and a mixture model–based linear correction. 
Automatic clustering   
 FlowSOM BuildSOM & ConsensusClusterPlus Creates clusters from flow cytometry data sets based on self-organizing map (SOM) and minimal spanning trees (MSTs). 
 PARC PARC Identifies single-cell clusters through a combination of graph-based clustering and pruning, coupled with the Leiden community-detection algorithm. 
 Rphenograph Rphenograph Clusters single cells by using the Louvain method based on a previous phenotypically defined graph. 
 Seurat FindNeighbors & FindClusters Finds single-cell communities based on k-nearest neighbor (KNN) graphs and clustering via Louvain or smart local moving (SLM) algorithms. 
Dimensionality reduction   
 Rtsne Rtsne Calculates t-distributed stochastic neighbor embedding (t-SNE). 
 uwot tumap Calculates uniform manifold approximation and projection (UMAP). 
 densvis densmap & densne Produces lower-dimensional embeddings (t-SNE- and UMAP-based) preserving the density of cells. 
Machine learning   
 biosigner biosign Features selection by running partial least squares-discriminant analysis (PLS-DA), random forest, and support vector machine (SVM) simultaneously (all methods as binary classifiers). 
 randomForestSRC rfsrc Selects immune populations based on random forest building and incorporates survival information. 
 SurvBoost boosting_core Detects more relevant populations through gradient boosting algorithm and includes survival data. 
Close Modal

or Create an Account

Close Modal
Close Modal