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Chronic lymphocytic leukemia has a highly variable disease course across patients, thought to be driven by the vast
inter- and intrapatientmolecular heterogeneity described in several large-scale DNA-sequencing studies conducted over
the past decade. Although the last 5 years have seen a dramatic shift in the therapeutic landscape for chronic lym-
phocytic leukemia, including the regulatory approval of several potent targeted agents (ie, idelalisib, ibrutinib,
venetoclax), the vast majority of patients still inevitably experience disease recurrence or persistence. Recent genome-
wide sequencing approaches have helped to identify subclonal populations within tumors that demonstrate a broad
spectrum of somatic mutations, diverse levels of response to therapy, patterns of repopulation, and growth kinetics.
Understanding the impact of genetic, epigenetic, and transcriptomic features on clonal growth dynamics and drug
response will be an important step toward the selection and timing of therapy.

Learning Objectives

• Identify genetic and phenotypic characteristics that impact
clonal growth dynamics

• Understand the latest research methodologies used to describe
clonal evolution

Introduction
Tumor development, progression, and resistance to therapy are steps
of a dynamic evolutionary process that applies across all cancer
types. A byproduct of evolution is the presence of numerous sub-
populations within a tumor that can be unique in their molecular
characteristics, growth kinetics, and response to therapy.1,2 This
process has notably been observed in chronic lymphocytic leukemia
(CLL), a B-cell malignancy thought to originate from monoclonal
B-cell lymphocytosis that accumulates in the blood and lymphoid
organs.3 Over the past decade, large-scale studies leveraging next-
generation sequencing (NGS) have uncovered vast inter- and intra-
tumoral heterogeneity in CLL.2,4-6 Clinically, CLL also has a diverse
presentation, with patients progressing at variable rates with a range of
responses to therapy. Despite the introduction of novel potent targeted
therapies to the clinic in the past 5 years, including Bruton tyrosine
kinase (BTK) inhibitors (such as ibrutinib and acalabrutinib), phos-
phatidylinositol 3-kinase inhibitors (including idelalisib, duvelisib, and
copanlisib), and B-cell lymphoma 2 (BCL2) inhibitors (venetoclax),
the majority of patients remain with disease.7-9

Recent findings have linked molecular heterogeneity in CLL to
diverse clonal dynamics and therapeutic responses.1,2,7,8 Using the
following clinical cases, we highlight the potential impact of these
insights on the prognostication of disease and the selection and
timing of therapy.1 On the basis of each patient’s initial cytogenetics,

what can we expect of their respective prognoses and responses to
treatment? What additional information would we need to better
predict their clinical courses?

Clinical case 1
A 51-year-old man has newly diagnosed CLL and Rai stage I disease.
His blood examination at diagnosis shows a white blood cell (WBC)
count of 23.3, and he is identified as havingmutated immunoglobulin
heavy chain (IgH) disease with del(13q).

Clinical case 2
A 51-year-old man has newly diagnosed CLL and Rai stage I disease.
His blood examination at diagnosis shows a WBC count of 14.8, and
he is identified as having unmutated IgH disease with del(13q) and a
positive ZAP70 status.

Tumor heterogeneity in CLL
Clonal evolution, one of the major factors underlying the intracta-
bility of cancer, is driven by underlying intratumoral heterogeneity.
Genetic and epigenetic factors can together influence a cell’s phe-
notype, growth rate, and response to environmental pressures. These
resulting dynamics in turn help shape the clonal makeup of tumors
and explain the heterogeneity often seen in tumor progression in the
absence and presence of therapy. Clonal patterns described across
cancers can include clonal equilibrium, in which the relative
abundance of each subclone is maintained in a mixed population
(Figure 1A), as well as clonal competition, whereby heritable (often
genetic) alterations result in differential fitness that influences the
prevalence of each clone in a population (Figure 1B). With regard
to clonal competition, distinct evolutionary patterns have been
observed. Linear evolutionary trajectories, for example, involve a
progeny clone replacing its parent clone in a full selective sweep and
tend to occur during particularly stringent conditions (ie, therapeutic
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treatment). Branched trajectories, in which multiple subclones co-
exist in the same tumor and compete for dominance, can occur during
passive or active evolutionary settings but unfold at different tempos
(gradual vs punctuated) accordingly.2,3,10-13 The extent to which these
evolutionary patterns are observed across cancers has been well-
documented in recent years, particularly with the advent of NGS.

CLL was among the first cancers characterized by modern sequencing
methods for which clonal evolution has been delineated. This is due
in large part to its relative indolence (allowing longitudinal sampling
over the course of disease), easy accessibility to high-purity samples
via serial venipuncture, and a highly variable clinical course that
allows mapping of molecular characteristics to prognosis and clinical
outcomes. The earliest reports of genetic heterogeneity in CLL from
karyotyping, fluorescence in situ hybridization, and single-nucleotide
polymorphism arrays collectively uncovered recurrent copy number
alterations, most commonly involving deletions of chromosomes
11q and 17p and trisomy of chromosome 12 (all of which associate
with more aggressive disease) and focal deletion of chromosome 13q
in more than half of all patients (which is associated with lower
risk).12,14,15 Relevant genes within the affected minimally deleted
regions of these cytogenetic abnormalities include ATM, BIRC3,
TP53, and miR-15a/16. Sequential fluorescence in situ hybridization
and chromosome banding analyses over the course of disease pro-
gression also provided some of the first insights into clonal evolution
at the chromosomal level, revealing that acquisition of chromosomal
aberrations over time correlate with IgH mutation status and poor
outcomes.16,17

Since then, the advent and decreasing costs of NGS have made large-
scale sequencing efforts a tractable approach for studying tumor
heterogeneity. Whole-genome and whole-exome sequencing (WGS/
WES), for example, have been applied to identify novel coding and
noncoding somatic mutations in thousands of patients with CLL
worldwide.4,5,18,19 Far from identifying a universal genetic driver,
these studies have established that only a small number of genes in
CLL are mutated in 10% to 15% of cases (as reviewed by Lazarian

et al), whereas a larger number of genes are mutated in ,5% of
patients.20 In aggregate, these driver genes have implicated a number
of key pathways in CLL biology, including DNA damage, RNA
processing, signaling pathways, and chromatin remodeling, several
of which have been functionally characterized either alone or in
relevant combinations through CLL cell lines and mouse models.21-25

The constellation of mutations present within a tumor can be con-
sidered a historical record of its evolutionary trajectory and can be
used to deduce a temporal order of genomic events. Driver mutations
that are clonal likely occurred early in disease and form the trunk of
its somatic evolutionary tree (ie, del[13q], tri[12], MYD88), whereas
subclonal mutations most commonly present in a small population of
leukemic cells and represent later events (ie, TP53, ATM, MGA,
BIRC3).4,26 The abundance of each subclonal mutation can be used
to infer subclonal hierarchy within the tumor’s phylogenetic tree,
allowing estimates of clonal shifts over time. As an analytic strategy,
the approach of determining whether a mutation is considered
“clonal” or “subclonal” based on the analysis of a single sequenced
sample depends on the depth and purity of the sequencing data.
Recent studies have demonstrated that the analysis of serial samples
from the same patient can greatly increase the sensitivity and con-
fidence in the detection of subclonal mutations.1,27

CLL heterogeneity is not restricted to somatic mutations. Epigenetic
mechanisms, such as DNA methylation, chromatin remodeling, and
posttranslational histone modification, also contribute to tumor di-
versity and play a role in cancer evolution.28 Epigenetics, which allow
cells to switch between different biological states, can result in
differential expression profiles that affect genome stability. This
plasticity allows greater adaptability to environmental stressors,
including therapy and immune editing. The epigenetic landscape of
CLL, studied through analysis of single gene promoters, genome-
wide arrays (Illumina 450k), and sequencing (bisulfite sequencing),
is relatively stable over time and across resting and proliferative
compartments and shares common features with normal B-cell
differentiation.29-31 Despite this stability, greater methylation het-
erogeneity and locally disordered methylation have been described
in CLL cells as compared with normal CD191 B cells. Methylation
heterogeneity correlates with genetic subclonal complexity, tran-
scriptional variation, and poor clinical outcome, suggesting that meth-
ylation patterns coevolve alongside genetic aberrations as a result
(or cause) of genetic instability and provide enhanced potential for
alternative evolutionary trajectories.32-36 Furthermore, mutations af-
fecting histone-modifying enzymes and chromatin remodelers have
been described in CLL, including EZH2 (catalyzes H3K27 trime-
thylation and results in transcriptional silencing), SETD2 (responsible
for the H3K36me3 histone mark that associates with actively tran-
scribed regions), and ARID1A and CHD2 (chromatin remodelers
identified in 2% and 5% of patients with CLL, respectively).28,35,37

Epigenetic heterogeneity has been associated with aggressive features
and shorter time to first treatment.36,38

The extent to which epigenetic modifications occur independently of
evolutionary changes in DNA is an open question in CLL, and across
cancers, in general. Possible interactions between genetic and epi-
genetic forces in tumor evolution include (1) simultaneous acqui-
sition, whereby a novel mutation in a cancer driver gene is acquired
that fundamentally alters the biology of a cell, involving changes to
the epigenome; and (2) stepwise acquisition, whereby there first
exists a low level of epigenetic instability producing variation within
the tumor population that is propagated to all subclones as novel driver
mutations arise.33 In CLL, intratumoral methylation heterogeneity in

Clonal equilibrium

Clonal competition Linear evolution

Branched evolution

Figure 1. Evolutionary mechanisms (linear and branched) underlying
clonal dynamics in cancer.
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the presence of subclonal mutations is linked to greater overall het-
erogeneity later in disease, thereby implicating a link between genetic
and epigenetic evolution.36

Approaches to studying clonal dynamics in CLL
Alongside the molecular characterization of CLL, numerous
methodologies have been employed to link dynamic changes in the
genetic and epigenetic features of individual cancers to their phe-
notype. These approaches largely rely on longitudinal sampling of
individual CLLs, which provides sequential snapshots of subclonal
composition and which, coupled with measurements of overall tumor
burden, can be used to infer clonal fitness and growth kinetics.1,2,4,13

For CLL, estimates of tumor burden can be readily gained from
sampling of the absolute lymphocyte count, available from routine
peripheral blood (WBCs) measurements. Likewise, for patients with
substantial lymph node involvement, tumor burden can be estimated
through radiologic imaging and tumor measurements. Altogether,
these calculations can contribute to the understanding of the clonal
composition of CLL across different organs and the genetic con-
tributors of this localization (Figure 2A). Summarized below are 4
existing and developing approaches that have been applied to the
study of CLL clonal kinetics.

Bulk genomic analysis
Although CLL, like other blood malignancies, has a much lower
mutational burden than solid tumors, we previously established that
with even an average of 20 coding mutations per sample, it is feasible

to reconstruct clonal architecture and likely phylogenies from an
individual sample.39 We recently demonstrated that with increasing
number of serial samples, increased sensitivity is gained for detection
of these subclonal events (Figure 2B), and that for CLL, the inferences
drawn from bulk WES of CLL samples were highly similar to those
drawn from WGS performed on the same samples, indicating the
robustness of current inference tools for analyses of WES data. With
samples collected over 2 time points, it becomes feasible to determine
whether clones are contracting vs expanding; with serial sampling of 3
or more time points, greater confidence is gained not only in the
building of phylogenetic trees but also for determining clonal dy-
namics and patterns of growth over time. Recently developed com-
putational tools such as PhylogicNDT can statistically model such
trajectories to infer the order of clonal driver events, subclonal pop-
ulations of cells and their phylogenetic relationships, and overall clonal
dynamics in a mixed population.27 Given the limitations of bulk
analysis when making clonal inferences or studying transcriptional
profiles, single-cell RNA-sequencing analysis will be of increasing
interest to the field of clonal dynamics (see section below).

Mathematical modeling
For CLL, mathematical modeling can predict the contribution of
genetics to clonal dynamics by using WBC counts or volumetric
measurements as a proxy of tumor burden (Figure 2A). Although
measurement across 2 time points can provide insight into the clonal
diversity and general fitness of subclones, serial measurements over
time can highlight the growth patterns and kinetics of bulk tumors
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Figure 2. Approaches to studying clonal dynamics in CLL. (A) Serial blood draws coupled with volumetric measurements can help monitor CLL
progression and contribute to estimations of growth kinetics. (B) Serial samples can increase the sensitivity of clonal detection as compared with depth
of sequencing (reprinted from Gruber et al1 with permission). (C) WES, mathematical modeling, and single-cell RNA sequencing can individually
and in combination provide insight into determinants of clonal dynamics. Novel lineage-tracing tools are increasingly being leveraged to study clonal
dynamics and evolution across cancers (left panel reprinted from Gruber et al1 with permission; top right panel reprinted from Guieze et al66 with
permission; bottom right panel reprinted from Trapnell et al44 with permission).
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and their constituent subclones. By calculating theoretical doubling,
it is feasible to define the likelihood of whether individual leukemias
display exponential growth kinetics or, rather, a pattern of logistic
growth, in which leukemia samples attain carrying capacity, or the
maximum number of cells that can be sustainably supported, given
the space and resources available (Figure 2C). Integration of genomic
information with growth pattern modeling can enable not only the
analysis of global tumor growth kinetics but also the tracking of the
growth of individual subclones and therefore, potentially, the dy-
namic interaction between distinct subclones within the same tumor
population. Komarova et al led some of the earliest efforts to generate
theoretic models using kinetic parameters of CLL (including vol-
umetric changes in lymph node and spleen sizes derived from serial
computed tomographic scans and changes in serial blood lymphocyte
counts) to predict the evolutionary dynamics of ibrutinib-resistance
mutations and the duration of therapeutic efficacy.40 These studies
proposed that despite patient-to-patient variation in the division and
death rate of CLL cells comprising their malignant cell mass,
knowledge of the growth kinetics of resistant clones can inform
whether clones involved in relapse are present before therapy and
the likely duration of response to therapy. Subsequent studies using
deuterated “heavy” water to metabolically label the DNA of pro-
liferating CLL cells in vivo for the study of CLL kinetics (pro-
liferation and death rates) in patients conformed with theoretical data
from mathematical modeling, further affirming mathematical modeling
as a viable approach for the study of clonal dynamics.41 Recently,
application of this type of analysis to real-world data of patients
with CLL has been described (see section below).

Single-cell analysis of clonal characteristics
Single-cell technologies have recently emerged as a powerful tool to
probe the characteristics of individual cells within a heterogeneous
population. Serial molecular profiling of CLLs at the single-cell level
over time can provide a granular view of the determinants of clonal
fitness. Somatic mutation analysis of DNA from single cells from a
sample by single-cell WGS, for example, can provide a compre-
hensive snapshot of the subclonal composition of a population by
definitively identifying the assortment of mutations present in in-
dividual clones, but until recently, this was limited by low throughput
and high cost. Targeted sequencing panels and droplet digital po-
lymerase chain reaction have served as alternative methods for the
DNA analysis of single cells (example in Figures 4D and 4E). Single-
cell reduced-representation bisulfite sequencing allows single-cell
analysis of genome-wide methylation profiles on a single-nucleotide
level.36,42 Single-cell assay for transposase-accessible chromatin
using sequencing, which enables the study of chromatin accessibility
and cancer-specific transcriptional regulatory networks in individual
cells, has yet to be applied to CLL but would likely provide key
insights regarding epigenetic reprogramming. Finally, single-cell
RNA sequencing is an increasingly popular technique for study-
ing changes in gene expression over time in CLL and is likely to
bring many novel and clone-resolved insights into drug response and
resistance mechanisms in the near future.43 New computational
analysis pipelines have also been developed, such as Monocle, an
unsupervised algorithm that can harness single-cell variation to order
cells by progress through temporal processes such as differentiation.
Monocle can theoretically be applied to serially acquired single-cell
data to resolve the transcriptional and clonal dynamics of relapse
(Figure 2C).44 Other approaches to analyzing cellular dynamics
across temporal processes include the estimation of cell-specific
RNA velocity, or the time derivative of the gene expression state,
by distinguishing between spliced and unspliced mRNAs in single-

cell RNA sequencing data. Application of this tool to the study of
therapeutic response in cancer could reveal the rate and direction
of change of cellular transcriptomes across thousands of individual
CLL clones.45

Lineage tracing for the integrative analysis of
clonal dynamics
Lineage-tracing methodologies, such as DNA barcoding, allow the
high-resolution study of clonal representation and fitness in a poly-
clonal population (Figure 2C). Tools such as ClonTracer, GESTALT,
and COLBERT,which leverage high-diversityDNA barcode libraries,
have recently been introduced into primary cancer cells and cell lines
to study interclonal dynamics, evolutionary trajectories, and mecha-
nisms of drug resistance that encompass genetic features and their
transcriptomic implications at lineage resolution.46-49 These are still
new techniques, and it is anticipated that adaptation of such meth-
odologies to CLL will help resolve the impact of CLL-associated
genetic and epigenetic aberrations on cellular function.

Clonal dynamics in the setting of “watch and wait”
For over a decade, “watch and wait” (W/W) has been the mainstay
approach for patients with CLL without symptomatic disease, al-
though patients often progress to a point at which frontline treatment
is warranted.50 In an effort to discover the genetic determinants of
natural progression, several studies have used WES and/or genome-
wide single-nucleotide polymorphism arrays to evaluate the muta-
tional profiles of CLL. In a recent WES study, CLL samples were
also collected across multiple time points during this pretreatment
period (ranging from 2 to 5 samples per patient and covering 3-5
years).1 In aggregate, the analysis of clonal architecture of these
samples has revealed that clonal equilibrium is very common during
this period.2,26,51 Indeed, genetic alterations initially identified in a
tumor at the time of diagnosis have been shown to remain stable over
time, rather than the tumors acquiring new lesions. Hence, in the
absence of a strong selective pressure, clonal stability appears to be
the predominate pattern. However, Smith et al have reported that the
methylation profiles of W/W patients yielded recurrent epigenetic
changes primarily involving memory B-cell–specific polycomb re-
pression complex 2 targets involved in chromatin remodeling and
regulation of gene expression.51

In the most comprehensive study of the W/W period to date, Gruber
et al evaluated growth patterns in CLL in the setting of natural
disease progression (Figure 3A).1 They described distinct patterns
of CLL growth in .100 patients with CLL and observed that even
in the absence of therapy, patient tumors could be categorized on
the basis of their CLL growth patterns. These patterns included
logistic growth, which is sigmoidal and stabilizes at a certain
steady-state level, and exponential, or unbounded, growth, as
defined by ,1000 3 109 cells/L and .1000 3 109 cells/L, re-
spectively (Figure 3B). In an analysis of serial samples collected
between diagnosis and first treatment from .100 patients with CLL,
they found that CLLs exhibiting exponential growth tended to undergo
clonal evolution, genetic complexity (ie, a larger number of CLL
drivers, including tri[12] and unmutated IgH), and faster disease
progression. Logistic growth tended to be more defined by clonal
equilibrium, a narrower spectrum of genetic lesions (including the less
aggressive del[13q] and mutated IgH), and a more indolent disease
course (Figure 3C). Subclonal kinetics did not always match the
growth patterns of the overall tumor; for example, CLLs characterized
by logistic growth globally could nonetheless harbor subclones with
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declining, plateauing, or even exponential growth rates. In general,
subclones harboring well-established CLL drivers (ie, TP53, ATM,
XPO1, KRAS) had higher growth rates than parental or sibling sub-
clones lacking said drivers, providing direct in vivo evidence of a
selective growth advantage conferred by putative driver mutations
(Figures 3D and 3E). A thorough understanding of the growth kinetics
driven by a combination of genetic and/or epigenetic alterations is
anticipated to be of great benefit to CLL prognostication and thera-
peutic decision making.

Clonal dynamics in therapeutic resistance
Although the frontline therapy of fludarabine, cyclophosphamide,
and rituximab has long been the standard of care for younger patients
with low-risk disease, a number of novel targeted therapies have been
added to the CLL therapeutic landscape over the past 5 years and are
rapidly gaining prominence in the first-line setting. These most
prominently include ibrutinib (a BTK inhibitor) and idelalisib (a
phosphatidylinositol 3-kinase inhibitor), which function to abro-
gate B-cell receptor signaling, and venetoclax (a BCL2 inhibitor)
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for high-risk patients or those who relapse after frontline treatment.
Although these therapies have been highly effective with deep
responses, many tumors do recur after a period of initial response
(Figure 4A) and display a range of evolutionary patterns with
recurrence.7,52,53

Clonal dynamics in chemotherapy resistance
Resistance to chemotherapy appears to employ diverse evolutionary
strategies, often selecting for preexisting TP53 mutant clones har-
boring high genomic complexity (ie, unmutated IgH)54,55 and re-
sulting in marked clonal evolution over the course of relapse.4,56 In a
study of 59 patients in which WES was performed on matched
samples before first-line fludarabine therapy and upon relapse, large
clonal shifts representing both linear and branched evolution were
observed, with the relapse clone already detectable before treatment
in 30% of cases.4 Biallelic inactivation of TP53 and ATM was
common in relapse clones, as well as additional mutations (ie, IKZF3)
thought to enhance fitness in the face of fludarabine therapy.56-58

Clonal dynamics in resistance to targeted agents
In general, aggregate data across cancers regarding resistance to targeted
therapies have revealed the employment of specific mechanisms of
resistance directly related to the pathways impacted by the specific
targeted agent. These include inactivating mutations in the target gene,
activation of critical signaling pathways parallel to or downstream of
the target, overactivation of an unrelated prosurvival pathway, and/or
histologic transformation.59 In the case of CLL, resistance to ibrutinib,
for example, has been found to predominantly involve mutation of its
direct target, BTK (C481S), or converging mutations in BTK’s im-
mediate downstream partner PLCG2 (leading to autonomous B-cell
receptor activity).60,61 Other lesions associated with ibrutinib resistance
include del(8p), which encompasses the TNF-related apoptosis-
inducing ligand (TRAIL) receptor and confers resistance to TRAIL-
induced apoptosis; clonal gain-of-function mutation of CARD11,
previously reported to confer resistance to ibrutinib in diffuse large
B-cell lymphoma and thought to activate the NF-kB pathway;
mutation of ITPKB, a central feedback inhibitor of the B-cell receptor
signaling pathway; and mutation of previously described CLL driver
genes SF3B1 and TP53.20 Furthermore, CLLs treated with ibrutinib
have been reported to undergo histologic transformation (in this case,
a small subclonal population harboring an ITPKB mutation), which
can underlie primary refractory disease or early progression.7,9,62,63

Clonal dynamics are dictated not only by intrinsic molecular features
but also by environmental factors. For example, Gaiti et al performed
multiplexed single-cell reduced-representation bisulfite sequencing
of serial CLL samples before and during ibrutinib-associated lym-
phocytosis and showed evidence of genetically and epigenetically
divergent lineages, marked by distinct transcriptional profiles, that
were preferentially expelled from the lymph node and thus differ-
entially responsive to therapy.36

The breadth of diverging and converging evolutionary mechanisms
that have been observed in CLL resistance to date point to a broader
question: Is resistance driven by acquisition of de novo mutations, or
are resistance mutations already present before treatment? Thus far,
the selection of rare clones with preexisting rather than de novo
genetic lesions over the course of ibrutinib therapy has been sup-
ported by mathematical modeling,40 as well as by sensitive exper-
imental detection of small populations of cells in the pretreatment
population harboring resistance mutations, as shown in a study by
Burger et al.64 For example, WES performed on 5 serial peripheral
blood CLL samples of one particular patient allowed the detection of

a minor subclone harboring a del(8p) at pretreatment and a dominant
clone at relapse that was a progeny of the del(8p)-positive subclone
but also harbored additional putative driver mutations in EIF2A and
RPS15 (Figures 4A and 4B). Analysis of this patient’s CLL growth
kinetics (using absolute lymphocyte counts) demonstrates that the
parental del(8p) clone (clone 3 in Figure 4B) was declining at the
time of ibrutinib initiation, whereas its EIF2A- and RPS15-containing
progeny (clones 4 and 5) were exhibiting elevated daily growth
rates in comparison (Figure 4C). These findings were validated
through single-cell droplet-based polymerase chain reaction de-
tection, which confirmed the presence of a small cell population
associated with the resistant subclone in pretreatment samples but
not in peripheral blood mononuclear cells from normal adult donors
(Figures 4D and 4E). In aggregate, these findings suggest that time to
clinically detectable relapse is determined not only by the presence of
resistance-conferring mutations within subclonal populations but also
by the size and growth rate of the drug-resistant clone at the time of
treatment initiation.64 Growth rates of relapsed clones grow faster
than clones from untreated CLLs1,64,65 (Figure 4F).

Like ibrutinib, resistance to venetoclax is also a product of active
selection. Of note, although point mutations in apoptosis-related
genes (including venetoclax target BCL2 [G101V]) have recently
been reported, relapse clones also appear to employ diverse alter-
native potential resistance mechanisms.66,67 Herling et al reported 8
patients with CLL characterized by WES and methylation profiling
before and after relapse to venetoclax that demonstrated signs of
accumulating genomic instability (copy number alterations or an-
euploidy); recurrent mutations in BTG1, NOTCH1, and TP53; and
infrequent alterations in BRAF, CD274 (PD-L1), NOTCH1, RB1,
SF3B1, and TP53 (divergent evolution).8 Furthermore, mutations
that impact energy stress sensing (protein kinase A/adenosine 59-
monophosphate–activated protein kinase) signaling pathways and
regulators of mitochondrial metabolism have also been implicated in
venetoclax resistance.67

Clinical and therapeutic implications
CLL’s ability to evolve and adapt to broad chemotherapy and tar-
geted therapy is a major challenge to successful treatment and du-
rability of response. In addition to the 2 established clinical staging
systems, Rai and Binet, which rely on clinical presentation for
prognostication, new prognostic scoring systems also include routine
screening for chromosomal aberrations and the wide array of somatic
mutations associated with poor treatment response, progression-free
survival, and overall survival.68 However, even these prognos-
tic scoring systems cannot yet account for the fact that individual
cancers do not always share a uniform combination of genetic or
epigenetic abnormalities. Furthermore, an accurate projection of
cancer growth requires knowledge of the tumor’s subclonal compo-
sition and the respective growth rates and fitness dynamics of the
subclones therein.

A different strategy for prognostication is more in line with the
concept of personalized medicine: To identify a tumor’s potential to
evolve, predict its likely evolutionary trajectories and formulate therapy
accordingly. Therapies can involve numerous strategies, including but
not limited to those described in the subsections below.

Targeting clonal vs subclonal lesions
The question of whether to target the trunk vs the branches of a
tumor’s evolutionary phylogenetic tree has been debated and is likely
dependent on (1) the subclonal composition of the tumor in question,
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(2) the complex relationship between different genetic lesions within
a target subclonal population, (3) the degree of genetic or epigenetic
heterogeneity present within that subclone, and (4) the availability of
relevant targeted agents. Targeting truncal alterations could theo-
retically lead to complete extinction of all malignant cells, but this
strategy is limited by the dependence of subclones on the truncal
target; it is possible that presence of coexisting genetic alterations
may override sensitivity to the targeted agent. For example, Burger
et al described a patient with an SF3B1 (G742D) mutation before
fludarabine, cyclophosphamide, and rituximab that, upon relapse,
was replaced with a clone harboring biallelic inactivation of TP53,
trisomy 12, and a newmutation in SF3B1 (K666T).62 Prior knowledge
of the subclonal driver mutations that will be most expanded after
frontline chemotherapy would allow the combination of standard
intervention chemotherapy with a targeted agent toward that sub-
clonal driver.

Evolutionary herding
A second approach involves promoting stable interclonal equilib-
rium to prevent development of aggressive or resistant phenotypes.69

To achieve this, one can do the following:

1. Target the genetic or epigenetic mechanisms by which clones
diversify early in disease;

2. Specifically target lesions resulting in unstable phenotypes and
preserve those with more stable phenotypes;

3. Introduce combination treatments composed of a “sensitizing”
agent as well as a truncal mutation–targeted agent, such that known
escape mechanisms are blocked off and cells are thus constrained to
the pathways affected by the targeted agent; and

4. Implement a “debulking” protocol whereby a broad cytotoxic
chemotherapy is applied in combination with a targeted agent,
such as to drastically reduce the heterogeneity of a population and
thus the likelihood of a rare population carrying a preexisting
mutation that bypasses the targeted agent, an approach increas-
ingly employed in clinical trials.

Successful implementation of evolutionary herding will require
a thorough knowledge of which combinations of early and later
driver mutations generate tumor populations that maintain a state of
equilibrium.

Harnessing antitumor immunity
CLL is highly adaptable and constantly undergoing evolution, such
that leveraging an equally adaptable immune system to help mitigate
its expansion may be highly beneficial. The immune system may
help to maintain cancer subclones in a state of equilibrium whereby
clonal expansions are attenuated by adaptive immunity. How tumor
cells evade immune predation is a current area of intense interest and
ongoing study, and leveraging a typically dysfunctional CLL im-
mune system also has its challenges.70

Despite these potential avenues, we are still in the early stages of
understanding the nuanced clonal dynamics underlying CLL pa-
thology. Several obstacles limit implementation of such approaches
in the clinic, including the still relatively high cost of NGS, its lower
bounds of sensitivity (false-positive findings if [or alternatively, when]
,5% of allelic frequency), and its limited availability in the com-
munity hospital setting. As such, the strategies proposed in this article
are of an exploratory nature, and additional studies are needed to
further ascertain their predictive capacity at larger scale. However,
given rapidly decreasing costs of sequencing and constant advances

in sequencing technologies, we anticipate these approaches will
become increasingly feasible. As we further our understanding of
the clonal dynamics involved in disease, we expect such findings
will be considered when interpreting outcomes (progression-free
survival or overall survival) during clinical trials. Finally, the
therapeutic strategies described above are particularly suited for
CLL therapy because they are contingent on the availability of
sequential tumor samples for the identification and prediction of
evolutionary patterns; such approaches will be harder to implement
in most solid or fast-growing tumors.

Conclusion and future directions
Analysis of clinical cases
Mathematical modeling using serial WBC counts and WES at di-
agnosis and immediately before therapy revealed the following:

• The patient in clinical case 1 experienced a growth rate per year
of 37% that followed a logistic growth pattern before treatment.
UponWES analysis, 4 major subclones were identified, 2 of which
share a subclonal del(13q) mutation. Each clone had a different
respective growth pattern, such that clones sharing a del(13q) had
more similar, logistic growth, whereas one subclone lacking any
identifiable CLL driver exhibited exponential growth. The patient
was monitored for 8 years before requiring therapy and was started
on a fludarabine/rituximab regimen, to which he has had a complete
response.

• The patient in clinical case 2 experienced a growth rate per year of
64% that followed an exponential growth pattern before treatment.
In WES analysis of the relapsed population, it became clear that a
subclone with multiple driver mutations (XPO1, del[13q], del[15q])
expanded more rapidly than its parent (differential growth rate of
57%/y). The patient was monitored for 3 years before requiring
therapy and was started on a fludarabine/rituximab regimen, to
which he relapsed and required secondary treatment after 6 years.

As exemplified by these clinical cases, genetics play a central role in
the clonal dynamics of tumor evolution. Mutation of IgH confers a
more favorable prognosis and usually associates with logistic tumor
growth and low genomic complexity. Unmutated IgH usually co-
occurs with strong CLL drivers and rapid exponential growth, a
shorter time to treatment, and poor response to therapy.1 Whereas the
patient in clinical case 1 exhibited overall clonal equilibrium from the
time of diagnosis to treatment, active clonal evolution was evident in
the patient in clinical case 2, who experienced larger shifts in clonal
fractions, with more proliferative clones having greater genomic
complexity than their parent clone. However, the presence of a
subclone in the patient in clinical case 1 that exhibits exponential
growth despite global logistic growth emphasizes the breadth of clonal
dynamics that is possible even in more stable disease.

Ongoing characterization of clonal dynamics in CLL has yielded a
growing understanding that clone size, growth kinetics, and genetic
characteristics all play a role in disease progression and resistance.
Newer studies using single-cell methodologies are also beginning to
suggest that epigenetics play a role in clonal dynamics, one that
perhaps intersects and cooperates with that of genetics. Though in its
early stages, elucidation of evolutionary mechanisms at the genetic
and epigenetic levels is anticipated to improve predictions of tumor
growth rates, inform future clinical trials, contribute to the evaluation
of drug response, and help in the formulation of future therapy
combinations or series of treatments.
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