

American Society of Hematology 2021 L Street NW, Suite 900, Washington, DC 20036 Phone: 202-776-0544 | Fax 202-776-0545 bloodadvances@hematology.org

Haploidentical transplantation in primary refractory/relapsed secondary versus de novo AML: from the ALWP/EBMT

Tracking no: ADV-2024-012798R1

Arnon Nagler (Chaim Sheba Medical Center, Israel) Myriam Labopin (Hopital Saint Antoine, France) Johanna Tischer (Ludwig-Maximilians-University of Munich, Klinikum Großhadern, Germany) Anna Maria Raiola (IRCCS Ospedale Policlinico San Martino, Italy) Desiree Kunadt (Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany, Germany) Jan Vydra (Institute of Hematology and Blood Transfusion, Czech Republic) Didier Blaise (Programme de Transplantation&Therapie Cellulaire, France) Patrizia Chiusolo (Fondazione Policlinico Universitario A. Gemelli IRCCS, Italy) Renato Fanin (Università degli Studi di Udine, Italy) Julia Winkler (University Hospital Erlangen, Germany) Edouard Forcade (Hopital Haut-Leveque - CHU Bordeaux, France) Gwendolyn van Gorkom (Maastricht University Medical Center, Netherlands) Fabio Ciceri (San Raffaele Scientific Institute, Italy) Mohamad Mohty (Hôpital Saint-Antoine, INSERM UMRs 938, and Université Sorbonne, France)

Abstract:

We compared the outcomes of haploidentical stem cell transplantation (HaploHSCT) with posttransplant cyclophosphamide (PTCy) in 719 patients (pts) with primary refractory (PR) / first relapse (Rel) secondary acute myeloid leukemia (sAML) (n=129) versus those of de novo AML (n=590), transplanted between 2010 and 2022. A higher percentage of pts with sAML versus de novo AML had PR disease (73.6% vs. 58.6%) (p=0.002). In 81.4% of sAML pts, the antecedent hematological disorder was myelodysplastic syndrome. Engraftment was 83.5% vs. 88.4% in sAML and de novo AML, respectively (p=0.13). In multivariate analysis HaploHSCT outcomes did not differ significantly between the groups; non-relapse mortality (NRM) hazard ratio (HR) =1.38 (95% CI 0.96-1.98, p=0.083), relapse incidence (RI) HR= 0.68 (95% CI 0.4.7.-1.00, p=0.051). The HRs for leukemia-free survival (LFS), overall survival (OS), and GVHD-free, relapse-free survival (GRFS) were 0.99 (95% CI 0.76-1.28, p=0.94), 0.99 (95% CI 0.77-1.29, p=0.97) and 0.99 (95% CI 0.77-1.27, p=0.94), respectively. We conclude that outcomes of HaploHSCT with PTCy are not different for PR/Rel sAML in comparison to PR/Rel de novo AML, a finding of major clinical importance.

Conflict of interest: No COI declared

COI notes:

Preprint server: No;

Author contributions and disclosures: AN wrote the manuscript, designed the study, and interpreted the data. ML and MM designed the study, performed the statistical analyses, interpreted the data, and edited the manuscript. JT, AMR, DK, JV, DB, SS, RF, JW, EF, GVG, and FC reviewed the manuscript and provided clinical data. All authors approved the final version of the manuscript.

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: NA

Clinical trial registration information (if any):

Haploidentical transplantation in primary refractory/relapsed secondary	1
versus <i>de novo</i> AML: from the ALWP/EBMT	2
	3
Arnon Nagler ¹ , Myriam Labopin ^{2, 3} , Johanna Tischer ⁴ , Anna Maria Raiola ⁵ , Desiree	4
Kunadt ⁶ , Jan Vydra ⁷ , Didier Blaise ⁸ , Patrizia Chiusolo ⁹ , Renato Fanin ¹⁰ , Julia	5
Winkler ¹¹ , Edouard Forcade ¹² , Gwendolyn Van Gorkom ¹³ , Fabio Ciceri ¹⁴ , Mohamad	6
Mohty ^{2, 3}	7
¹ Division of Hematology, Sheba Medical Center, Tel Hashomer, Israel	8
² EBMT Paris study office; Department of Haematology, Saint Antoine Hospital;	9
INSERM UMR 938, Sorbonne University, Paris, France	10
³ Sorbonne University, Department of Haematology, Saint Antoine Hospital; INSERM	11
UMR 938, Paris, France	12
⁴ Klinikum Grosshadern, Munich, Germany	13
⁵ IRCCS Ospedale Policlinico San Martino, Genova, Italy	14
⁶ University Hospital TU Dresden, Dresden, Germany	15
⁷ Institute of Hematology and Blood Transfusion, Prague, Czech Republic	16
⁸ Programme de Transplantation&Therapie Cellulaire, Marseille, France	17
⁹ Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia,	18
Fondazione Policlinico A. Gemelli IRCCS, Sezione di Ematologia, Dipartimento di	19
Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma,	20
Italy	21
¹⁰ Azienda Ospedaliero Universitaria di Udine, Udine, Italy	22
¹¹ University Hospital Erlangen, Erlangen, Germany	23
¹² CHU Bordeaux, Hopital Haut-Leveque, Pessac, France	24
¹³ University Hospital Maastricht, Maastricht, Netherlands	25
¹⁴ Ospedale San Raffaele, Haematology and BMT, Milano, Italy	26
	27
Corresponding author	28

Arnon Nagler arnon.nagler@sheba.health.gov.il	29
+972526667180	30
Arnon Nagler, M.D., M.Sc	31
Professor of Medicine Tel Aviv University	32
President Hematooncology Center	33
Medical Director Cord Blood Bank	34
Chaim Sheba Medical Center	35
Tel-Hashomer, Israel	36
	37
	38
Word Counts:	39
Abstract: 184	40
Text: 3318	41
References: 54	42
Supplementary tables: 2	43
Figures: 1	44
	45
	46
Competing Interests	47
The authors declare no competing financial interests	48
Short title: Haplo transplantation in sAML versus de novo AML	49
	50
Keywords: haploidentical allogeneic stem cell transplantation, post-transplantation	51
cyclophosphamide, secondary acute myeloid leukemia, de novo acute myeloid	52
leukemia, primary refractory/relapsed	53
	54

61

62

63

Data presented in part as an oral presentation at the ASH, San Diego, California	55
2023 (abstract 1049)	56
	57
Key points:	58

- Outcomes of haploidentical transplantation with PTCy are similar for primary 59 refractory/relapsed secondary vs de novo AML 60
- HaploHSCT with PTCy can rescue high-risk patients with PR/ Rel sAML

Abstract

We compared the outcomes of haploidentical stem cell transplantation (HaploHSCT) 64 with post-transplant cyclophosphamide (PTCy) in 719 patients (pts) with primary 65 refractory (PR) / first relapse (Rel) secondary acute myeloid leukemia (sAML) 66 (n=129) versus those of de novo AML (n=590), transplanted between 2010 and 67 2022. A higher percentage of pts with sAML versus de novo AML had PR disease 68 (73.6% vs. 58.6%) (p=0.002). In 81.4% of sAML pts, the antecedent hematological 69 disorder was myelodysplastic syndrome. Engraftment was 83.5% vs. 88.4% in sAML 70 and de novo AML, respectively (p=0.13). In multivariate analysis HaploHSCT 71 outcomes did not differ significantly between the groups; non-relapse mortality (NRM) 72 hazard ratio (HR) =1.38 (95% CI 0.96-1.98, p=0.083), relapse incidence (RI) HR= 73 0.68 (95% CI 0.4.7.-1.00, p=0.051). The HRs for leukemia-free survival (LFS), overall 74 survival (OS), and GVHD-free, relapse-free survival (GRFS) were 0.99 (95% CI 0.76-75 1.28, p=0.94), 0.99 (95% CI 0.77-1.29, p=0.97) and 0.99 (95% CI 0.77-1.27, p=0.94), 76 respectively. We conclude that outcomes of HaploHSCT with PTCy are not different 77 for PR/Rel sAML in comparison to PR/Rel de novo AML, a finding of major clinical 78 importance. 79

81

Secondary acute myeloid leukemia (sAML) is a subset of acute myeloid leukemia 82 (AML) with notoriously adverse outcomes evolving from an antecedent hematological 83 disorder, mainly myelodysplastic syndromes (MDS) and myeloproliferative 84 neoplasms (MPNs) or as a complication of prior cytotoxic chemotherapy or radiation 85 therapy (1-5). Patients with sAML have inferior outcomes with lower remission rates 86 and overall survival (OS) compared to de novo AML, mainly due to a higher 87 frequency of adverse molecular mutations including secondary type mutations and 88 high-risk cytogenetic abnormalities (6-8), in addition to typically being older and 89 having an antecedent hematological disease (9-12). Allogeneic hematopoietic stem 90 cell transplantation (alloHSCT) represents a potentially curative therapy in this 91 setting, rescuing up to 40% of the patients (13-17) as was already reported in 2010 92 by the Center for International Blood and Marrow Transplant Research (CIBMTR) 93 that described 868 patients with therapy-related AML or MDS including with 94 advanced disease that were transplanted between 1990 and 2004 mainly from 95 matched sibling donors (MSD) or matched unrelated donors (MUD) and 96 myeloablative conditioning (MAC) with a 5-year disease-free survival (DFS) and OS 97 of 21% and 22%, respectively (13). On behalf of the Acute Leukemia Working Party 98 (ALWP) of the European Society for Blood and Marrow Transplantation (EBMT), we 99 evaluated transplantation outcomes in approximately 5000 patients with sAML 100 transplanted between 2000 and 2016, mainly from MSD and MUD, where we 101 observed 2-year OS, leukemia-free survival (LFS) and graft-versus-host disease 102 (GVHD)-free, relapse-free survival (GRFS) of 44.5%, 38.8%, and 27.2%, respectively 103 (18). Notably, transplantation outcomes in sAML are significantly inferior to those 104 achieved in de novo AML with a lower OS, LFS, and GRFS due to higher non-105 relapse mortality (NRM) and relapse incidence (RI) (19). Transplantation outcomes 106 are improving, including those for sAML as we have recently demonstrated in a study 107

of sAML patients comparing 1337 that were transplanted in 2000 to 2010 with 2887 108 transplanted in 2011 to 2020. We demonstrated a significant reduction in the 2-year 109 NRM and a significant improvement in the 2-year GRFS but the 2-year LFS and OS 110 were similar (20) with somewhat better results with MAC versus reduced intensity 111 conditioning (RIC) (13,21). One of the major advances in the field of transplantation 112 is the development of the non-T depleted haploidentical stem cell transplantation 113 (HaploHSCT) with post-transplant cyclophosphamide (PTCy) which has been 114 increasingly used for AML and proven to be highly effective in preventing GVHD and 115 reducing NRM, thus improving transplantation results including for sAML with a 2-116 year LFS of 49% and OS of 57% in patients transplanted in complete response (CR) 117 (22-25). We have recently analyzed outcomes of HaploHSCT with PTCy in 231 118 patients with sAML in comparison to 1480 patients with de novo AML both in first CR 119 (CR1) and observed no significant difference in any transplantation outcome 120 parameter between the sAML versus de novo AML groups (26), which is in contrast 121 to our previous results with human leukocyte antigen (HLA) matched alloHSCT (19) 122 However, results of alloHSCT may differ in patients with primary refractory (PR)/ first 123 relapse (Rel) sAML, a group which is very hard to treat and with substantially inferior 124 transplantation outcomes than leukemic patients in remission (27-28). Failure to 125 respond to the induction course and relapse are major unfavorable prognostic factors 126 (4, 5). PR or Rel AML is associated with a dismal prognosis (4-5, 27-28). From a 127 theoretical point of view, it is conceivable that HaploHSCT will improve results in 128 patients with PR/Rel leukemic patients as some reports indicate a stronger graft-129 versus-leukemia (GVL) effect with haploidentical grafts due to the broad HLA 130 disparity (29-30). We therefore assessed the outcomes of HaploHSCT in patients 131 with PR/Rel sAML comparing them with those of HaploHSCT in *de novo* AML, taking 132 advantage of the ALWP/EBMT registry. 133

134

Patients and methods

Study design and data collection

137

135

136

138

This was a retrospective, multicenter analysis using the dataset of the ALWP of the 139 EBMT. The EBMT is a voluntary working group of more than 600 transplant centers 140 that are required to report all consecutive stem cell transplantations and follow-ups 141 once a year. Since the 1st of January 2003, all transplantation centers have been 142 required to obtain written informed consent before data registration with the EBMT, 143 as per the Declaration of Helsinki of 1975. Data accuracy is assured by the individual 144 transplant centers and by quality control measures such as regular internal and 145 external audits. In addition, the study protocol was approved by each site and 146 complied with country-specific regulatory requirements. The results of disease 147 assessments at HSCT were also submitted and form the basis of this report. 148 Eligibility criteria for this analysis included adult patients ≥18 years of age with 149 primary refractory (PR) / first relapse (Rel) de novo AML or PR/ first Rel sAML who 150 underwent a first HSCT from a non-T-cell depleted haploidentical donor with PTCy as 151 part of GVHD prophylaxis between 2010 and 2022. Active AML was defined by the 152 failure to achieve CR (bone marrow blasts >5%) despite induction chemotherapy 153 (27). A haploidentical donor was defined as ≥2 HLA mismatches between donor and 154 recipient. The exclusion criteria were HSCT from other donor types (sibling, 155 unrelated, or cord blood donor); previous history of HSCT, and T cell-depleted HSCT. 156 Data collected included recipient and donor characteristics including the number of 157 HLA mismatches, age, gender, cytomegalovirus (CMV) serostatus, Karnofsky 158 performance status (KPS) score, and hematopoietic cell transplantation-specific 159 comorbidity index (HCT-CI), disease characteristics including cytogenetics (ELN 160 2017) and disease status at transplantation, antecedent of malignant disorder, year 161 of transplant, type of conditioning regimen including total body irradiation (TBI), stem 162 cell source, and GVHD prophylaxis regimen including number of immunosuppressive 163 (IS) compounds. The conditioning regimen was defined as MAC when containing TBI 164 with a dose >6 Gray or a total dose of busulfan (Bu) >8 mg/kg or >6.4 mg/kg when 165 administered orally or intravenously, respectively. All other regimens were defined as 166 RIC (31). Grading of acute (a) GVHD was performed using established criteria (32). 167 Chronic (c) GVHD was classified as limited or extensive according to published 168 criteria (33). For this study, all necessary data were collected according to the EBMT 169 guidelines, using the EBMT minimum essential data forms. The list of institutions 170 contributing data to this study is provided in the Supplemental Appendix. 171

Statistical analysis

The median, interguartile range (IQR), and range were used for quantitative 174 variables, and frequency and percentage for categorical variables. The study 175 endpoints were OS, LFS, RI, NRM, engraftment, aGVHD, cGVHD, and GRFS. All 176 endpoints were measured from the time of transplantation. Engraftment was defined 177 as achieving an absolute neutrophil count (ANC) of 0.5×10⁹/L for three consecutive 178 days. OS was defined as time to death from any cause. LFS was defined as survival 179 with no evidence of relapse or progression. NRM was defined as death from any 180 cause without previous relapse or progression. We used modified GRFS criteria. 181 GRFS events were defined as the first event among grade III-IV aGVHD, extensive 182 cGVHD, relapse, or death from any other cause (34). Patient, disease, and 183 transplant-related characteristics for the two cohorts (de novo and sAML) were 184 compared using the Mann-Whitney U test for numerical data, and the chi-squared or 185 Fisher's exact test for categorical data. Median follow-up was calculated by the 186 reverse Kaplan-Meier method. The probabilities of OS, LFS, and GRFS were 187 calculated using the Kaplan-Meier estimate. The RI and NRM were calculated using 188 cumulative incidence (CI) functions in a competing risk setting, with death in 189

172

173

remission being treated as a competing event for relapse. Death was considered a 190 competing event for engraftment. To estimate the CI of acute or cGVHD, relapse and 191 death were considered as competing events. Univariate analyses were performed 192 using the log-rank test for LFS and OS while Gray's test was used for CI. Multivariate 193 analyses (MVA) were performed using the Cox proportional-hazards regression 194 model (35). All variables differing significantly between the two groups, and potential 195 risk factors were included in the model. To take into account the heterogeneity in the 196 effect of a characteristic or a treatment across centers, we introduce a random effect 197 (or frailty) into the Cox multivariate models (36). We looked at all potential 198 199 interactions between the core variable and other significant variables. Results were expressed as the hazard ratio (HR) with a 95% confidence interval (95% CI). All p 200 values were two-sided with a type 1 error rate fixed at 0.05. Statistical analyses were 201 performed with SPSS 25.0 (SPSS Inc., Chicago, IL, USA) and R 4.0.2 (R Core Team 202 Fifty (2020). R: A language and environment for statistical computing. R Foundation 203 for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/) (37). 204 The scientific boards of the ALWP of the EBMT approved this study 205

Results

Patient, transplant, and disease characteristics

A total of 719 patients met the inclusion criteria, 129 with sAML and 590 with de novo 209 AML. Table 1 shows the baseline demographic and clinical characteristics. Median 210 follow-up was 45.59 (IQR, 39.08-57.85) and 43.48 (IQR, 37.53-47.99) months for 211 patients with sAML and de novo AML (p=0.2), respectively. Patients with de novo 212 AML were younger, with a median age of 55.4 (range 18-77.8.) versus 61.3 (range 213 21-78.8) years, (p<0.0001). The median year of transplantation was 2018 (range 214 2010-2022) vs. 2017 (range 2010-2022) (p=0.62), respectively, and 65.1% and 215 57.6% of the patients with sAML and *de novo* AML, were male (p=0.11), respectively. 216

206

207

In sAML patients, the most frequent (81.4%) antecedent hematological disorder was 217 myelodysplastic syndrome (MDS), followed by another hematological disorder in 218 10.9% and solid tumor in 8.3% of the patients, respectively. A higher percentage of 219 pts with sAML vs de novo AML had PR disease (73.6% vs 58.6%) (p=0.002). The 220 distribution of cytogenetic risk was similar between the two groups and categorized 221 as intermediate (59.4% vs 58.6%), adverse (37.4% vs 34.4%), and favorable (5.9% 222 vs 4%) for patients with sAML and *de novo* AML, respectively (p=0.75). The KPS 223 score was <90 in 50.8% and 44.1 %, of the patients with sAML and de novo AML, 224 respectively (p=0.17). The HCT-CI was higher in the sAML group in comparison with 225 the de novo AML group, with HCT-CI >3 in 40.3% vs 21.9%, respectively (p<0.0001). 226 Both patient and donor CMV seropositivity was similar between the two groups with 227 79.8% and 75.4%; p=0.29, and 53.1% and 59.3%; p=0.2 in sAML and *de novo* AML, 228 respectively. Female donor-to-male patient combination was used in 20.9% of 229 transplants in both sAML and de novo AML. Fewer sAML patients received MAC 230 compared to de novo AML patients, 39.8% vs 47.8%, respectively, but this was not 231 statistically significant (p=0.10). Graft source was mainly peripheral blood (PB) stem 232 cells in both sAML (69.8%) and de novo (66.8%) groups (p=0.51). The most frequent 233 conditioning regimen for both groups was thiotepa/busulfan/fludarabine at 38.8% and 234 followed by fludarabine/low dose TBI in 17.1% and 12.9% and 42%. 235 busulfan/fludarabine in 14.7% and 16%, of patients with sAML, and de novo AML, 236 respectively (Supplemental Table S1). For GVHD prophylaxis, PTCY was combined 237 with cyclosporine A (CSA) and mycophenolate mofetil (MMF) in 41.4% and 52.9% of 238 the sAML and de novo AML patients, respectively, while in 41.1% and 33.6%, 239 respectively, it was combined with MMF and tacrolimus (Tacro) (Supplemental Table 240 241

Transplantation outcome

S2).

242

243

Engraftment and GVHD incidence did not differ between the sAML vs de	244
novo AML groups as depicted in Table 2. Neutrophil recovery	245
(ANC > 0.5×10^{9} /L) was achieved in 83.5% and 88.4% of the patients with	246
sAML and <i>de novo</i> , respectively (p=0.13). On univariate analysis, on day	247
+180, the incidence of aGVHD grades II-IV and III-IV was 20% (13.5%-	248
27.4%) vs 26.9% (23.3%-30.6%) (p=0.12) and 8.9% (4.7%-14.7%) vs 10.4%	249
(8%-13.1%), respectively (p=0.61). Two-year incidence of total and extensive	250
cGVHD was 25.3% (17.7-33.5) vs 20.7% (17.3-24.3) (p=0.27) and 12.5%	251
(7.2-19.4) vs 10.3% (7.9-13.1), respectively (p=0.46) (Table 3). The outcomes	252
of LFS, OS, and GRFS did not differ between the sAML and de novo AML	253
groups. Two-year NRM and RI were 38.7% (30-47.3) vs 23.8% (20.3-27.4)	254
(p=0.001) and 28.8% (20.9-37.1) vs 46.3 % (42-50.4) (p=0.001) in <i>de novo</i> vs	255
sAML, respectively (Table 3). These differences were not confirmed on MVA.	256

Multivariate analysis

In the MVA (Table 4), we did not find any statistical difference in transplantation 258 outcomes between the sAML and de novo AML groups. The HRs were 1.38 (0.96-259 1.98, p=0.083) for NRM, 0.68 (0.47-1, p=0.051) for RI, 0.99 (0.76-1.28, p=0.94) for 260 LFS, 0.99 (0.77-1.29, p=0.97) for OS and 0.99 (0.77-1.27, p=0.94) for GRFS (Table 261 4). Similarly, the risks of aGVHD II-IV HR=0.69 (0.43-1.11, p=0.13), aGVHD III-IV 262 HR=0.93 (0.47-1.85, p=0.84), cGVHD all grades HR=1.39 (0.87-2.22, p=0.17) and 263 extensive cGVHD HR=1.13 (0.6-2.15, p=0. 7) did not differ between the two groups 264 (Table 4). Significant prognostic factors were adverse cytogenetics risk associated 265 with higher risk of RI and lower LFS, OS, and GRFS; older age associated with 266 higher NRM and inferior OS, KPS >90 was a prognostic factor for lower NRM and RI 267 and higher LFS, OS, and GRFS. A peripheral blood graft was associated with a 268 higher risk of grade II-IV and III-IV aGVHD, NRM, and a lower GRFS, and patient 269 CMV seropositivity was associated with a lower OS (Table 4). No difference was 270

287

288

289

273

274

275

Cause of death

A total of 484 patients died during the study period comprising 91 with sAML and 393 276 with de novo AML (Table 5). The original disease was the main cause of death 277 accounting for 40.9% and 59.3% of the deaths, respectively. The second cause of 278 death was infection at 26.1% and 19.6%, followed by GVHD with 9.1% and 9.4% of 279 deaths, respectively (Table 5). Multi-organ failure accounted for 5.7% and 1.8%, and 280 central nervous system toxicity for 4.5% and 0% of deaths, respectively. Second 281 malignancies accounted for 2.3% and 0.8%, and graft failure/rejection for 3.4% and 282 0.8% of the deaths, respectively. Other causes of death were infrequent and included 283 veno-occlusive disease of the liver, cardiac toxicity, hemorrhage, and interstitial 284 pneumonitis, each accounting for less than 1.5% of total deaths with no difference 285 between the patient groups (Table 5). 286

Discussion

In this study, we have demonstrated similar transplantation outcomes for patients 290 with PR/Rel sAML in comparison to those with de novo AML following non-T 291 depleted HaploHSCT with PTCy. Notably, about a guarter of this very high-risk group 292 of sAML patients, with 73.6% being primary refractory, were relapse-free and GVHD-293 free at 2 years. These results are similar to those published by Brissot et al. who 294 compared 199 HaploHSCT to MUD and MMUD in AML patients with active disease 295 (PR/Rel) with a 2-year OS of 29.3%, LFS of 28%, and GRFS of 16.2% (27). Similarly, 296 in a previous study, we assessed transplantation outcomes in 852 AML patients with 297 active disease by comparing two MAC regimens, observing an OS of 31.2%-33.4% 298 and LFS of 25%-28.4% at 2 years (38). Comparable data on AML patients with active 299 disease have been previously published from the Memorial Sloan Kettering Cancer 300 Center and others, in the non-HaploHSCT setting (39-41). It is with no surprise that 301 the outcome of HaploHSCT in PR/Ref sAML is worse than that achieved in sAML 302 patients in remission. In a previous study, we analyzed transplantation outcomes in 303 154 sAML (45% in CR, 55% with active disease) patients undergoing non-T-depleted 304 HaploHSCT between 2006 to 2016, and observed a 2-year LFS, OS, and GRFS of 305 37.1%, 43.3%, and 42.1%, respectively (42). Active disease at the time of 306 transplantation was associated with inferior outcomes, with a 2-year OS of 35.3% 307 compared to 53.2% in patients in CR (p=0.02). Active disease at the time of 308 transplantation was also an unfavorable prognostic factor for LFS with (30.1% vs 309 45.7%, p=0.01) and GRFS (21.5% vs 38.4%, p=0.03) in those in CR, respectively 310 (42). In a subsequent study that included 246 HaploHSCT (50% with active disease 311 and 50% in CR), 2-year LFS, OS, and GRFS were 32%, 41%, and 23%, respectively 312 (43). Again, there was a correlation between disease status at transplantation and 313 outcome. In the MVA, patients transplanted in CR had significantly better OS, LFS, 314 and GRFS than those transplanted with active disease with HRs of 1.99, p<0.001; 315 2.17, p<0.001, and 1.97, p<0.001, respectively. Being with refractory or relapsed 316 leukemia at the time of transplantation may also explain the somewhat lower 317 neutrophil recovery of 83.5% - 88.4% we observed, somewhat similar to previous 318 reports in this setting (28,41). 319

However, none of these studies have focused on comparing outcomes in sAML 320 versus *de novo* AML. Patients with sAML treated with conventional therapy are 321 known to have inferior outcomes with lower remission rates and OS compared to 322 patients with *de novo* AML (1, 2, 9-11). One of the initial questions was therefore 323 whether the same would also be true for patients undergoing transplantation 324 especially as besides the high-risk disease biology (which may lead to higher post-325

transplant RI), sAML patients are typically older, with comorbidities, leading to 326 reduced tolerability to chemotherapy with increased toxicity and side effects (44-45), 327 factors that may result in a higher NRM both of which will translate into inferior 328 outcomes of alloHSCT in sAML (21, 46). Addressing this guestion, Schmaelter et al. 329 compared transplantation outcomes in 11439 patients with de novo AML and 1325 330 with sAML (8600 of whom were in CR1) transplanted mostly from sibling and 331 unrelated donors. They observed a higher RI and NRM in sAML versus de novo AML 332 patients, which translated to significantly inferior LFS, OS, and GRFS in the sAML 333 patients with HRs of 1.33, 1.32, and 1.2, respectively (19). We subsequently 334 compared outcomes of HaploHSCT with PTCy in 231 sAML patients versus 1480 335 patients with de novo AML, both in CR1, and observed no significant difference in 336 any transplantation outcome parameter between the two groups (26), results that are 337 in contrast to the results of Schmaelter et al. in a similar cohort of AML patients 338 undergoing alloHSCT from HLA matched rather than haploidentical donors (19). 339 These to some degree unexpected results may be due to a reduction in transplant-340 related mortality (TRM) which is known to be high in sAML transplants (13,16-341 17,19,21,46) as the HaploHSCT PTCy platform was previously demonstrated to lead 342 to a remarkable reduction in TRM and GVHD incidence (22-24,47). As for the 2-year 343 incidence of extensive cGVHD of 20-25%, we observed, which may be somewhat 344 higher than previously reported in the HaploHSCT PTCy setting (22-24), it may be 345 due to early withdrawal of immune suppression utilized to prevent relapse in this very 346 high-risk patient population, however being a registry-based study we do not have 347 this information. Of major importance, particularly for transplantation in patients with 348 active leukemia, is the fact that the haploidentical procedure may be associated with 349 an enhanced anti-leukemic effect. A stronger GVL effect was recently demonstrated 350 in a mouse-leukemic model where mismatched cytotoxic T lymphocytes possessed 351 higher cytotoxic activity against the leukemia than their matched counterparts (48). 352 Several clinical studies from China showed faster clearance of post-transplant 353

measurable residual disease (MRD), reduced post-transplant disease progression, 354 and relapse, and better results in high-risk leukemia patients with positive MRD pre-355 transplantation, with haploidentical compared to sibling transplantation (29-30,49). 356 Furthermore, PTCy may provide a direct immune-mediated, specific anti-leukemic 357 effect, distinct from GVHD, that is probably mediated by the release of cytokines or 358 other molecules to which leukemic cells may be more sensitive than normal cells 359 (50). Notably, using modern immune profiling and machine learning techniques, 360 unique immune signatures and T-cell subset reconstitutions were recently 361 demonstrated with PTCy, which may allow a potent GVL effect while reducing GVHD 362 (51). Indeed, PTCy was shown to impair the proliferation and cytokine production of 363 alloreactive T-cells but did not completely eradicate them and thus reduce the 364 progression of severe forms of GVHD while maintaining the GVL effect (52). 365 However, from a clinical point of view, the possible stronger GVL effect associated 366 with HaploHSCT may not be translated to a reduced relapse rate due to the HLA-loss 367 phenomenon which is one of the major mechanisms of relapse after HaploHSCT (53-368 54). 369

Altogether, the reduced toxicity and potentially stronger anti-leukemic effect 370 associated with HaploHSCT may explain the lack of difference we observed with the 371 Haplo SCTs in patients with PR/Rel sAML versus those with PR/Rel de novo AML. 372 The other factors observed to be associated with HaploHSCT outcomes included 373 cytogenetic risk, age, KPS, CMV seropositivity, and peripheral blood grafts and are in 374 agreement with previous publications of allogeneic transplantations including 375 HaploHSCTs in sAML (16, 18, 19, and 26). This study, being a retrospective and 376 registry-based transplantation study, has several limitations including the risk of 377 selection bias and the possibility of unavailable data that could not have been 378 considered, such as frontline therapies as well as the number of bone marrow and 379 PB blasts, mutation profile, molecular, and MRD data. 380 In conclusion, in this real-life registry-based retrospective analysis of HaploHSCT for 381 PR/Rel sAML in comparison to HaploHSCT in PR/Rel de novo AML, we observed 382 similar transplantation outcomes with HaploHSCT, with about a guarter of the very 383 high-risk group of sAML patients, 73.6% being primary refractory, reaching relapse-384 free and GVHD-free status at 2 years. Hopefully, with the recent advances in our 385 understanding of the biology of sAML as well as the approval of novel agents 386 including vyxeos (CPX-351) and venetoclax (55-56), it may be possible to further 387 improve PR/Rel sAML outcomes. 388

Supplementary Appendix: Contributing Centers

Klinikum Grosshadern, Munich, Germany; Ospedale San Raffaele s.r.l., Milano, Italy; 390 IRCCS Ospedale Policlinico San Martino, Genova, Italy; Universitaetsklinikum 391 Dresden, Dresden, Germany; Institute of Hematology and Blood Transfusion, 392 Prague, Czech Republic; Programme de Transplantation&Therapie Cellulaire, 393 Marseille, France; Universita Cattolica S. Cuore, Rome, Italy; Azienda Ospedaliero 394 Universitaria di Udine, Udine, Italy; University Hospital Erlangen, Erlangen, Germany; 395 CHU Bordeaux, Hopital Haut-Leveque, Pessac, France; University Hospital 396 Maastricht, Maastricht, Netherlands; CHU Grenoble Alpes - Université Grenoble 397 Alpes, Grenoble, France; Medicana International Hospital Istanbul, Istanbul, Turkey; 398 S.S.C.V.D Trapianto di Cellule Staminali, Torino, Italy; Charles University Hospital, 399 Pilsen, Czech Republic; Hospital Gregorio Marañón, Madrid, Spain; Goethe-400 Universitaet, Frankfurt Main, Germany; IRCCS, Casa Sollievo della Sofferenza, San 401 Giovanni, Italy; University Hospital Eppendorf, Hamburg, Germany; RM Gorbacheva 402 Research Institute, Pavlov University, Petersburg, Russian Federation; University 403 Hospital | Basel, Basel, Switzerland; Hannover Medical School, Hannover, Germany; 404 Ospedale San Gerardo, Monza, Italy; Techniciens d'Etude Clinique suivi de patients 405 greffes, Strasbourg, France; Azienda Ospedali Riuniti di Ancona, Ancona, Italy; 406

Mazzoni Hospital, Ascoli Piceno, Italy; Hosp. Reina Sofia, Córdoba, Spain; ASST 407 Grade ospedale metropolitano niguarda, Milano, Italy; ASST Papa Giovanni XXIII, 408 Bergamo, Italy; University of Freiburg, Freiburg, Germany; Fondazione IRCCS 409 Policlinico San Matteo, Pavia, Italy; Istituto Clinico Humanitas, Milano, Italy; CHRU, 410 Angers, France; USD Trapianti di Midollo, Adulti, Brescia, Italy; Turku University 411 Hospital, Turku, Finland; University Hospital | Essen, Essen, Germany; Hopital La 412 Miletrie, Poitiers, France; Fondazione IRCCS – Ca' Granda, Milano, Italy; 413 Elisabethinen-Hospital, Linz, Austria; Philipps Universitaet Marburg, Marburg, 414 Germany; Ospedale La Maddalena - Dpt. Oncologico, Palermo, Italy; Klinikum 415 Augsburg, Augsburg, Germany; Hospital Sirio-Libanes, Sao Paulo, Brazil; University 416 Hospital Innsbruck, Innsbruck, Austria; Hospital San Maurizio, Bolzano, Italy; 417 Ospedale Nord, Taranto, Italy; Klinikum Rechts der Isar, Munich, Germany; ICO-418 Hospital Universitari Germans Trias i Pujol, Badalona, Spain; University Hospital La 419 Fe, Valencia, Spain; H SS. Antonio e Biagio, Alessandria, Italy; Gazi University 420 Faculty of Medicine, Ankara, Turkey; CHU Nantes, Nantes, France; Azienda 421 Ospedaliera Universitaria Careggi, Firenze, Italy; LKH - University Hospital Graz, 422 Graz, Austria; Fundación Jiménez Díaz, Madrid, Spain; Martin-Luther-Universitaet 423 Halle-Wittenberg, Halle, Germany; U.O.D Trapianti di midollo osseo, Rozzano, Italy; 424 Anadolu Medical Center Hospital, Kocaeli, Turkey; A.Z. Sint-Jan, Brugge, Belgium; 425 University of Heidelberg, Heidelberg, Germany; AORMN Hospital, Pesaro, Italy; 426 George Papanicolaou General Hospital, Thessaloniki, Greece; Az. Ospedaliera S. 427 Croce e Carle, Cuneo, Italy; Hospital Universitario Virgen del Rocío, Madrid, Spain; 428 Klinikum Nuernberg, Nuernberg, Germany; U.O. Ematologia con Trapianto, Bari, 429 Italy; Fundació Institut d'Investigació Sanitària Illes Balears ? IdISBa, Palma, Spain; 430 Hospital Clínico, Salamanca, Spain; Hospital Morales Meseguer, Murcia, Spain; 431 Kings College Hospital, London, United Kingdom; University of Saarland, Homburg, 432 Germany; A.O.R.N. `SAN.G MOSCATI`, Avellino, Italy; Centro Trapianti Unico Di 433 CSE Adulti e Pediatrico A. O Brotzu, Cagliari, Italy; Imperial College, London, United 434

Kingdom; University Hospital Gasthuisberg, Leuven, Belgium; Cliniques	435
Universitaires St. Luc, Brussels, Belgium; Hospital U. Marqués de Valdecilla,	436
Santander, Spain; CHU CAEN, Caen, France; Département d'Oncologie, Service	437
d'Hématologie, Geneva, Switzerland; CHU ESTAING, Clermont, France; CHU de	438
Lille, Lille, France; Hospital Clínico de Valencia, Valencia, Spain; Ospedale S.	439
Camillo-Forlanini, Rome, Italy; U.O.S.A Centro Trapianti e Terapia Cellulare, Siena,	440
Italy; Hospital Universitario Virgen de la Arrixaca, Murcia, Spain; ZNA, Antwerp,	441
Belgium; University Medical Center Schleswig-Holstein, Luebeck, Germany; Medical	442
Clinic and Policinic 1, Leipzig, Germany; ALBERTS CELLULAR THERAPY, Pretoria,	443
South Africa; Azienda Ospedaliero Universitaria di Modena Policlinico, Modena, Italy;	444
Hospital Univ. Virgen de las Nieves, Granada, Spain; Grande Ospedale	445
Metropolitano Bianchi Melacrino Morelli - Centro Unico Trapianti A. Neri, Reggio	446
Calabria, Italy; AZ Delta, Roeselare, Belgium; University of Muenster, Muenster,	447
Germany; Ospedale San Carlo, Potenza, Italy; University of Amiens: CHU Amiens,	448
Amiens, France; Demiroglu Bilim University Istanbul Florence Nightingale Hospital,	449
Istanbul, Turkey; Antwerp University Hospital (UZA), Antwerp E, Belgium;	450
Universitaet Bonn, Bonn, Germany; Universitaetsmedizin Mannheim, Mannheim,	451
Germany; Robert_Bosch_Krankenhaus, Stuttgart, Germany;	452
Diakonissenkrankenhaus, Stuttgart, Germany; Hospital Guglielmo da Saliceto,	453
Piacenza, Italy; Klinikum Frankfurt (Oder) GmbH, Frankfurt Oder, Germany; Hospital	454
Clinic, Barcelona, Spain; Medizinische Universitaet Wien, Vienna, Austria; Univ. La	455
Sapienza, Rome, Italy; Hospital de la Princesa, Madrid, Spain; Institut de	456
Cancerologie Lucien Neuwirth, Saint Etienne, France; Hôpital Henri Mondor, Creteil,	457
France; Hadassah University Hospital, Jerusalem, Israel; Hospital Santa Creu i Sant	458
Pau, Barcelona, Spain; Research Committee - University of Patras, Patras, Greece;	459
Inst. Portugues Oncologia, Lisboa, Portugal; University Hospital Center Rebro,	460
Zagreb, Croatia; European Institute of Oncology, Milano, Italy; University Hospital	461
Aachen, Aachen, Germany; Národný onkologický ústav, Bratislava, Slovak Republic;	462

American University of Beirut Medical Center, Beirut, Lebanon; University Hospital	463
Birmingham NHSTrust, Stoke, United Kingdom; Heinrich Heine Universitaet,	464
Duesseldorf, Germany; Department of Bone Marrow Transplantation and	465
Oncohematology, Gliwice, Poland; Ospedale Dell'Angelo, Venezia, Italy; HUCH	466
Comprehensive Cancer Center, Helsinki, Finland; HELIOS Klinikum Berlin-Buch,	467
Berlin, Germany; University of Cologne, Cologne, Germany; Hospital de Gran	468
Canaria Dr Negrin, Las Palmas, Spain; St. George`s Hospital, London, United	469
Kingdom; Hospital Regional de Málaga, Malaga, Spain; Hospital Vall d`Hebron,	470
Barcelona, Spain; Baskent University Hospital, Adana, Turkey; Klinikum Bremen-	471
Mitte, Bremen, Germany; Hospital del SAS, Cadiz, Spain; University of Milano,	472
Milano, Italy; Policlinico G.B. Rossi, Verona, Italy; CHU - Institut Universitaire du	473
Cancer Toulouse, Toulouse, France; Universitair Ziekenhuis Brussel, Brussels,	474
Belgium; Centre Hospitalier Universitaire de Rennes, Rennes, France; Nottingham	475
University, Nottingham, United Kingdom; University of Liege, Liege, Belgium;	476
University Hospital Linkoeping, Linkoeping, Sweden; University of Napoli, Napoli,	477
Italy; Hopital Saint Antoine, Paris, France; University Regensburg, Regensburg,	478
Germany; Ospedale Policlinico, Catania, Italy; Sezione di Ematologia, Perugia, Italy;	479
Azienda Ospedaliero Universitaria Pisana, Pisa, Italy; Medical University of Gdansk,	480
Gdansk, Poland; Medizinische Klinik m. S. Hämatologie , Onkologie und	481
Tumorimmunologie, Berlin, Germany; CHU Lapeyronie, Montpellier, France; Centre	482
Henri Becquerel, Rouen, France; CHRU Limoges, Limoges, France;	483

Acknowledgments

We thank all the EBMT centers and national registries for contributing patients to this485study (Supplementary appendix material). We also thank the data managers for their486excellent work.487

Author's contribution

Downloaded from http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024012798/2221738/bloodadvances.2024012798.pdf by guest on 07 May 2024

484

AN wrote the manuscript, designed the study, and interpreted the data. ML and MM	489
designed the study, performed the statistical analyses, interpreted the data, and	490
edited the manuscript.	491
JT, AMR, DK, JV, DB, SS, RF, JW, EF, GVG, and FC reviewed the manuscript and	492
provided clinical data. All authors approved the final version of the manuscript.	493
Competing interests	494
The authors declare that they have no relevant conflict of interest and no competing	495
financial interests.	496
Ethics approval and consent to participate	497
The scientific boards of the ALWP of the EBMT approved this study.	498
Consent for publication	499
Not applicable.	500
Availability of data materials	501
AN, ML, FC, and MM had full access to all study data (available upon data-specific	502
request).	503
Funding	504
Not applicable.	505
	506
	507
References	508 509
	510
1. Granfeldt Ostgard LS, Medeiros BC, Sengelov H, Norgaard M, Andersen MK,	511
Dufva IH, et al. Epidemiology and clinical significance of secondary and therapy-	512
related acute MSecondary AML is generally associated with poor clinical outcomes	513
compared to de novo acute myeloid leukemia: A National Population-Based Cohort	514
Study. J Clin Oncol. 2015; 33(31):3641-9.	515

2. Hulegårdh E, Nilsson C, Lazarevic V, Garelius H, Antunovic P, Rangert Derolf	516
Å, et al. Characterization and prognostic features of secondary acute myeloid	517
leukemia in a population-based setting: A report from the Swedish Acute Leukemia	518
Registry. American Journal of Hematology. 2015; 90(3):208-14.	519
3. Della Porta MG. Prognosis of secondary acute myeloid leukemia. Leuk Res. 2013;	520
37(8):857-8.	521
4. Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret,	522
H. et al. Diagnosis and management of AML in adults: 2022 ELN Recommendations	523
from an International Expert Panel. Blood 2022, 140, 1345–1377.	524
5. Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on	525
diagnostic, risk-stratification, and management. American Journal of Hematology	526
2023. 98:502–526	527
6. Lindsley, R.C.; Mar, B.G.; Mazzola, E.; Grauman, P.V.; Shareef, S.; Allen, S.L.;	528
Pigneux, A.; Wetzler, M.; Stuart, R.K.; Erba, H.P.; et al. Acute myeloid leukemia	529
ontogeny is defined by distinct somatic mutations. <i>Blood</i> 2015, 125, 1367–1376.	530
7. Hochman MJ, Othus M, Hasserjian RP, Ambinder A, Brunner A, Percival MM et	531
al. Prognostic impact of secondary versus de novo ontogeny in acute myeloid	532
leukemia is accounted for by the European LeukemiaNet 2022 risk classification.	533
Leukemia. 2023; 37:1915-1918	534
8. Bouligny IM, Mather KR, Grant S. Secondary-type mutations in acute myeloid	535
leukemia: updates from ELN 2022.Cancers.2023; 22;15(13):3292	536
9.Kayser S, Döhner K, Krauter J, Köhne C-H, Horst HA, Held G, et al. The impact of	537
therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients	538
with newly diagnosed AML. Blood. 2011; 117:2137-45.	539
10. Zeichner SB, Arellano ML. Secondary Adult Acute Myeloid Leukemia: a review of	540
our evolving understanding of a complex disease process. Current Treatment	541
Options in Oncology. 2015; 16:37.	542

11. Richardson DR, Green SD, Foster MC, Zeidner JF. Secondary AML emerging	543
after therapy with hypomethylating agents: outcomes, prognostic factors, and	544
treatment options. Curr Hematol Malig Rep. 2021; 16:97-111	545
12. Bauer M, Vaxevanis C, Heimer N, Al-Ali HK, Jaekel N, Bachmann M, et al.	546
Expression, regulation, and function of microRNA as important players in the	547
transition of MDS to secondary AML and their cross-talk to RNA-binding proteins. Int	548
J Mol Sci 2020; 21:7140	549
13. Litzow MR, Tarima S, Perez WS, Bolwell BJ, Cairo MS, Camitta BM, et al.	550
Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute	551
myeloid leukemia. Blood. 2010; 115(9):1850-1857.	552
14. Tang FF, Huang XJ, Zhang XH, Chen H, Chen YH, Han W. Allogeneic	553
hematopoietic cell transplantation for adult patients with treatment-related acute	554
myeloid leukemia during first remission: Comparable to de novo acute myeloid	555
leukemia. Leuk Res. 2016; 47:8-15.	556
15. Matthews A, Pratz KW. Optimizing outcomes in secondary AML. Hematology Am	557
Soc Hematol Educ Program (2022); 2022 (1): 23–29 with Allogeneic Stem Cell	558
Transplantation in Japan. Biol Blood Marrow Transplant. 2020; 26(8):1543-1551	559
17. Nilsson C, Hulegårdh E, Garelius H, Möllgård L, Brune M, Wahlin A, et al.	560
Secondary Acute Myeloid Leukemia and the role of allogeneic stem cell	561
transplantation in a population-based setting. Biol Blood Marrow Transplant. 2019;	562
25(9):1770-1778	563
18. Sengsayadeth S, Labopin M, Boumendil A, Finke J, Ganser A, Stelljes M, et al.	564
Transplant Outcomes for Secondary Acute Myeloid Leukemia: Acute Leukemia	565
Working Party of the European Society for Blood and Bone Marrow Transplantation	566
Study. Biol Blood Marrow Transplant. 2018; 24(7):1406-1414.	567
19. Schmaelter A-K, Labopin M, Socié G, Itälä-Remes M, Blaise D, Yakoub-Agha I,	568
et al. Inferior outcome of allogeneic stem cell transplantation for secondary acute	569

myeloid leukemia in first complete remission as compared to de novo acute myeloid	570
leukemia. Blood Cancer Journal. 2020 ; 10(3) :26.	571
20. Nagler A, Ngoya M, Galimard JE, Labopin M, Kröger N, Socié G, et al.	572
Trends in outcome of transplantation in patients with secondary acute myeloid	573
leukemia: an analysis from the Acute Leukemia Working Party (ALWP) of the EBMT.	574
Bone Marrow Transplant. 2022 Sep 16. doi: 10.1038/s41409-022-01825-0.	575
21. Nagler A, Peczynski C, Dholaria B, Labopin M, Valerius T, Dreger P, et al.Impact	576
of conditioning regimen intensity on outcomes of second allogeneic hematopoietic	577
cell transplantation for secondary acute myelogenous leukemia. Bone Marrow	578
Transplant. 2022; 57:1116-1123.	579
22. Luznik L, O'Donnell PV, Fuchs EJ. Post-transplantation cyclophosphamide for	580
tolerance induction in HLA-haploidentical bone marrow transplantation. Semin Oncol.	581
2012; 39:683-693.	582
23. McCurdy SR, Kanakry JA, Showel MM, Tsai HL, Bolaños-Meade J, Rosner GL,	583
et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with	584
high-dose posttransplantation cyclophosphamide.Blood. 2015 7; 125:3024-3031	585
24. Kasamon YL, Bolaños-Meade J, Prince GT, Tsai HL, McCurdy SR, Kanakry JA,	586
et al. Outcomes of Nonmyeloablative HLA-Haploidentical Blood or Marrow	587
Transplantation with High-Dose Post-Transplantation Cyclophosphamide in Older	588
Adults. J Clin Oncol. 2015; 33:3152-3161.	589
25. Nagler A, Mohty M. In 2022, which is preferred: haploidentical or cord transplant?	590
Hematology Am Soc Hematol Educ Program (2022) 2022 1: 64–73.	591
26.Nagler A, Labopin M, Blaise D, Raiola AM, Corral LL, Bramanti S et al. Non-T-	592
depleted haploidentical transplantation with post-transplant cyclophosphamide in	593
patients with secondary versus de novo AML in first complete remission: a study from	594
the ALWP/EBMT.J Hematol Oncol. 2023; 16(1):58.	595

27. Brissot E, Labopin M, Ehninger G, Stelljes M, Brecht A, Ganser A et al.	596
Haploidentical versus unrelated allogeneic stem cell transplantation for	597
relapsed/refractory acute myeloid leukemia: a report on 1578 patients from the Acute	598
Leukemia Working Party of the EBMT. Haematologica. 2019; 104:524-532	599
28. Nagler A, Ngoya M, Galimard JE, Labopin M, Bornhäuser M, Stelljes M et al.	600
Longitudinal Outcome over Two Decades of Unrelated Allogeneic Stem Cell	601
Transplantation for Relapsed/Refractory Acute Myeloid Leukemia : An ALWP/EBMT	602
Analysis. Clin Cancer Res. 2022; 28:4258-4266.	603
29. Yu S, Huang F, Wang Y, Xu Y, Yang T, Fan Z, et al. Haploidentical	604
transplantation might have a superior graft-versus-leukemia effect than HLA-matched	605
sibling transplantation for high-risk acute myeloid leukemia in first complete	606
remission: a prospective multicentre cohort study. Leukemia. 2020; 34:1433-1443.	607
30. Wang Y, Liu DH, Xu LP, Liu KU, Chen H, Chen YH, et al. Superior graft-	608
versus-leukemia effect associated with transplantation of haploidentical compared	609
with HLA-identical sibling donor grafts for high-risk acute leukemia: an historic	610
comparison. Biol Blood Marrow Transplant 2011; 17:821-830.	611
31. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al.	612
Defining the intensity of conditioning regimens: working definitions. Biol Blood	613
Marrow Transplant. 2009; 15:1628-33.	614
32. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al.	615
1994 Consensus Conference on Acute GVHD Grading. Bone Marrow	616
Transplant.1995; 15:825-828.	617
33.Shulman HM, Sullivan KM, Weiden PL, McDonald GB, Striker GE, Sale GE, et al.	618
Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20	619
Seattle patients. Am J Med. 1980; 69:204-217.	620

34. Ruggeri A, Labopin M, Ciceri F, Mohty M, Nagler A. Definition of GvHD-free,	621
relapse-free survival for registry-based studies: an ALWP-EBMT analysis on patients	622
with AML in remission. Bone marrow transplantation. 2016; 51:610–611	623
35.Kanate AS, Nagler A, Savani B. Summary of Scientific and Statistical Methods,	624
Study Endpoints and Definitions for Observational and Registry-Based Studies in	625
Hematopoietic Cell Transplantation. Clinical Hematology International. 2019; 2(1):2-	626
4.	627
36. Andersen PK, Klein JP, Zhang MJ. Testing for center effects in multi-center	628
survival studies: a Monte Carlo comparison of fixed and random effects tests. Stat	629
Med. 1999; 18:1489–500.37.	630
37. R Core Team. R: a language and environment for statistical computing. R	631
Foundation for Statistical Computing; 2020. https://www.R-project.org/	632
38. Nagler A, Savani BN, Labopin M, Polge E, Passweg J, Finke J et al. Outcomes	633
after use of two standard ablative regimens in patients with refractory acute myeloid	634
leukaemia: a retrospective, multicentre, registry analysis. Lancet Haematol. 2015;	635
2(9): e384–392	636
39. Gyurkocza B, Lazarus HM, Giralt S. Allogeneic hematopoietic cell transplantation	637
in patients with AML not achieving remission: potentially curative therapy. Bone	638
Marrow Transplant. 2017; 52(8):1083–1090.	639
40. Duval M, Klein JP, He W, Yves Chan J, Cairo M, Camita BM et al. Hematopoietic	640
stem-cell transplantation for acute leukemia in relapse or primary induction failure. J	641
<i>Clin Oncol.</i> 2010; 28(23):3730–3738.	642
41. Craddock C, Labopin M, Pillai S, Finke J, Bunjes D, Greinix G et al. Factors	643
predicting outcome after unrelated donor stem cell transplantation in primary	644
refractory acute myeloid leukaemia. Leukemia. 2011 ; 25808–813.	645
42. Li Z, Labopin M, Ciceri F, Blaise D, Tischer J, Ehninger G, et al.	646
Haploidentical transplantation outcomes	647
for secondary acute myeloid leukemia: Acute Leukemia Working Party (ALWP) of the	648

Downloaded from http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024012798/2221738/bloodadvances.2024012798.pdf by guest on 07 May 2024

European Society for Blood and Marrow Transplantation (EBMT) study. Am J	649
Hematol. 2018; 93(6):769-777	650
43. Ruggeri A, Labopin M, Savani B, Paviglianiti A, Blaise D, Volt F, et al.	651
Hematopoietic stem cell transplantation with unrelated cord blood	652
or haploidentical donor grafts in adult patients	653
with secondary acute myeloid leukemia, a comparative study from Eurocord and the	654
ALWP EBMT. Bone Marrow Transplant. 2019; 54(12):1987-1994.	655
44. Boddu PC, Kantarjian HM, Ravandi F, Garcia-Manero G, Verstovsek S, Jabbour	656
EJ, et al. Characteristics and outcomes of older patients with secondary acute	657
myeloid leukemia according to treatment approach. Cancer. 2017; 123:3050–3060.	658
45. Park SH, Chi H-S, Cho Y-U, Jang S, and Park C-J. Evaluation of prognostic	659
factors in patients with therapy-related acute myeloid leukemia. Blood Res. 2013;	660
48:185	661
46.Schmid C, De Wreede LC, Van Biezen A, Finke J, Ehninger G, Ganser A, et al.	662
Outcome after relapse of myelodysplastic syndrome and secondary acute myeloid	663
leukemia following allogeneic stem cell transplantation: a retrospective registry	664
analysis on 698 patients by the Chronic Malignancies Working Party of the European	665
Society of B. Haematologica. 2018; 103:237–45.	666
47. Wachsmuth LP, Patterson MT, Eckhaus MA, Venzon DJ, Kanakry CG. Optimized	667
timing of post-transplantation cyclophosphamide in MHC-haploidentical murine	668
hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2020; 26(2):230-	669
241	670
48. Guo H, Chang YJ, Hong Y, Xu LP, Wang Y, Zhang XH, Wang M, Chen H, Chen	671
YH, Wang FR, Wei-Han, Sun YQ, Yan CH, Tang FF, Mo XD, Liu KY, Huang XJ.	672
Dynamic immune profiling identifies the stronger graft-versus-leukemia (GVL) effects	673
with haploidentical allografts compared to HLA-matched stem cell transplantation.	674
Cell Mol Immuno.2021 ; 18 :1172-1185.	675

49 Chang Y-J, Wang Y, Liu Y-R, Xu LP, Zhang XH, Chen H, et al. Haploidentical	676
allograft is superior to matched sibling donor allograft in eradicating pre-	677
transplantation minimal residual disease of AML patients as determined by	678
multiparameter flow cytometry: a retrospective and prospective analysis. J Hematol	679
Oncol. 2017; 10 (1):134.	680
50. Battipaglia G, Labopin M, Kröger N, Vitek A, Afanasyev B, Hilgendorf I, et al.	681
Posttransplant cyclophosphamide vs antithymocyte globulin in HLA-mismatched	682
unrelated donor transplantation. Blood. 2019; 134:892-899.	683
51. McCurdy SR, Radojcic V, Tsai HL, Vulic A, Thompson E, Ivcevic S et al.	684
Signatures of GVHD and relapse after posttransplant cyclophosphamide revealed by	685
immune profiling and machine learning. Blood. 2022; 139:608-623.	686
52. Wachsmuth LP, Patterson MT, Eckhaus MA, Venzon DJ, Gress RE, Kanakry	687
CG. Post-transplantation cyclophosphamide prevents graft-versus-host disease by	688
inducing alloreactive T cell dysfunction and suppression.	689
J Clin Invest. 2019 ; 129 :2357-2373.	690
53. Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C MTL et al. Loss of	691
mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med	692
,2009;361:478-88.	693
54. Zeiser R, Vago L. Mechanisms of immune escape after allogeneic hematopoietic	694
cell transplantation. Blood, 2019;133:1290-1297	695
55. Lancet JE, Uy GL, Newell LF, Lin TL, Ritchie EK, and Stuart RK, et al. Cortes	696
JE.CPX-351 versus 7+3 cytarabine and daunorubicin chemotherapy in older adults	697
with newly diagnosed high-risk or secondary acute myeloid leukemia: 5-year results	698
of a randomized, open-label, multicenter, phase 3 trial. Lancet Haematol. 2021; 8:	699
e481–91.	700

56. Short NJ, Venugopal S, Qiao W, Kadia TM, Ravandi F, and Macaron W et al.	701
Impact of frontline treatment approach on outcomes in patients with secondary AML	702
with prior hypomethylating agent exposure. J Hematol.Oncol.2022 15, 12	703

704
705
706
707
708
709
710
711
/12
713
714
715
716
717
718
719
720
721
722
723
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Table 1: Patient and transplant characteristics

	<i>de novo</i> AML (n=590)	secAML (n=129)	Р	Overall (n=719)
Follow-up (months), median [IQR]	43.48 [37.53-47.99]	45.59 [39.08-57.85]	0.20	43.48 [39.47-47.69]
Patient age (years), median (min-max)				
[IQR]	55.4 (18-77.8) [42.6-63]	61.3 (21-78.8) [55-67.3]	< 0.0001	57.2 (18-78.8) [44.2-63.8]
Patient sex	339 (57.6%)	84 (65.1%)	0.11	423 (58.9%)
Male	250 (42.4%)	45 (34.9%)		295 (41.1%)
Female	1	0		1
Year transplant, median (min-max)	2017 (2010-2022)	2018 (2010-2022)	0.62	2017 (2010-2022)
Cytogenetic risk group				
Favorable	28 (5.9%)	4 (4%)	0.75	32 (5.6%)
Intermediate	282 (59.4%)	58 (58.6%)		340 (59.2%)
Adverse	165 (34.7%)	37 (37.4%)		202 (35.2%)
Missing	115	30		145
Status at transplant				
Primary refractory	346 (58.6%)	95 (73.6%)	0.002	441 (61.3%)
First Relapse	244 (41.4%)	34 (26.4%)		278 (38.7%)
Donor age (years)				
Median (min-max) [IQR]	38.3 (13-73.9) [29.4-48]	36.9 (16.6-64) [29.1-43.9]	0.21	38.2 (13-73.9) [29.3-47.1]
Missing	20	3		23
Donor sex				
Donor male	365 (62.1%)	81 (62.8%)	0.88	446 (62.2%)
Donor female	223 (37.9%)	48 (37.2%)		271 (37.8%)
Missing	2	0		2
Female to male combination				
No F->M	466 (79.1%)	102 (79.1%)	0.99	568 (79.1%)
F->M	123 (20.9%)	27 (20.9%)		150 (20.9%)
Missing	1	0		1

Conditioning intensity				
MAC	281 (47.8%)	51 (39.8%)	0.10	332 (46.4%)
RIC	307 (52.2%)	77 (60.2%)		384 (53.6%)
Missing	2	1		3
Cell source				
BM	196 (33.2%)	39 (30.2%)	0.51	235 (32.7%)
PB	394 (66.8%)	90 (69.8%)		484 (67.3%)
Karnofsky score				
<90	249 (44.1%)	64 (50.8%)	0.17	313 (45.3%)
>=90	316 (55.9%)	62 (49.2%)		378 (54.7%)
Missing	25	3		28
HCT-CI				
HCT-CI 0-2	422 (78.1%)	74 (59.7%)	< 0.0001	496 (74.7%)
HCT-CI>=3	118 (21.9%)	50 (40.3%)		168 (25.3%)
Missing	50	5		55
Patient CMV				
Pat. CMV neg	143 (24.6%)	26 (20.2%)	0.29	169 (23.8%)
Pat. CMV pos	439 (75.4%)	103 (79.8%)		542 (76.2%)
Missing	8	0		8
Donor CMV				
Don. CMV neg.	233 (40.7%)	60 (46.9%)	0.2	293 (41.8%)
Don. CMV pos	340 (59.3%)	68 (53.1%)		408 (58.2%)
Missing	17	1		18
ТВІ				
СТ	484 (82.2%)	105 (81.4%)	0.83	589 (82%)
ТВІ	105 (17.8%)	24 (18.6%)		129 (18%)
Missing	1	0		1

Abbreviations: secAML-secondary acute myeloid leukemia; IQR-interquartile range; min-minimum; max-maximum; F-female; M-male; Pat.patient, CMV- cytomegalovirus; neg-negative; pos-positive; Don. -donor; BM-bone marrow; PB-peripheral blood; MAC – myeloablative conditioning; RIC – reduced intensity conditioning; TBI – total body irradiation; CT-chemotherapy; BM – bone marrow; HCT-CI - hematopoietic cell transplantation specific comorbidity index

	<i>de novo</i> AML (n=590)	secAML (n=129)	Р	Overall (n=719)
Engraftment				
Graft failure	66 (11.6%)	21 (16.5%)	0.13	87 (12.5%)
Engrafted	502 (88.4%)	106 (83.5%)		608 (87.5%)
Missing	22	2		24
Cumulative incidence of PMN>500	88.2%[85.2-90.6]	83.3%[75.5-88.9]	0.042	
Acute GVHD				
Grade I	121 (21.3%)	22 (17.5%)	ND	143 (20.6%)
Grade II	89 (15.7%)	13 (10.3%)		102 (14.7%)
Grade III	39 (6.9%)	5 (4%)		44 (6.3%)
Grade IV	23 (4%)	7 (5.6%)		30 (4.3%)
Present, grade unknown	3 (0.5%)	1 (0.8%)		4 (0.6%)
No aGvHD present (Grade 0)	293 (51.6%)	78 (61.9%)		371 (53.5%)
Missing	22	3		25

Table 2: Transplantation outcomes: Engraftment and GVHD

Abbreviations: secAML-secondary acute myeloid leukemia; PMN- polymorphonuclear neutrophils; GVHD- graft-versus-host disease; a-acute; ND-not done; unless otherwise stated, results expressed as frequency (%). The numbers are the raw percentages for each grade GVHD.

Table 3: Transplantation outcomes: U	Jnivariate analysis
--------------------------------------	---------------------

	2 years					
	Relapse	NRM	LFS	OS	GRFS	
de novo AML	46.3%[42-50.4]	23.8%[20.3-27.4]	30%[26.1-33.9]	33.5%[29.4-37.6]	23.8%[20.3-27.6]	
secAML	28.8%[20.9-37.1]	38.7%[30-47.3]	32.5%[24.3-41]	34.4%[25.9-43.1]	25%[17.6-33.1]	
P value	0.001	0.001	0.58	0.35	0.49	

	180 days		2 years		
	Acute GVHD II-IV	Acute GVHD III-IV	Chronic GVHD	Ext. chronic GVHD	
de novo AML	26.9%[23.3-30.6]	10.4%[8-13.1]	20.7%[17.3-24.3]	10.3%[7.9-13.1]	
secAML	20%[13.5-27.4]	8.9%[4.7-14.7]	25.3%[17.7-33.5]	12.5%[7.2-19.4]	
P value	0.12	0.61	0.27	0.46	

Abbreviations: secAML-secondary acute myeloid leukemia; NRM-non-relapse mortality; LFS-leukemia-free survival; OS-overall survival; GVHD-graft- versus-host disease; GRFS-GVHD-free, relapse-free survival; Ext-extensive

 Table 4: Transplantation outcomes: Multivariate analysis

	RELAPSE		RELAPSE NRM		LFS	
	HR (95% CI)	p value	HR (95% CI)	p value	HR (95% CI)	p value
Secondary AML	0.68 (0.47-1)	0.051	1.38 (0.96-1.98)	0.083	0.99 (0.76-1.28)	0.94

Patient age (per 10y)	0.92 (0.84-1.02)	0.11	1.39 (1.19-1.62)	< 0.0001	1.06 (0.98-1.15)	0.13
Adverse risk group	1.95 (1.49-2.55)	< 0.0001	0.97 (0.67-1.39)	0.85	1.47 (1.18-1.82)	5.00E-04
First relapse vs PR	0.98 (0.75-1.29)	0.89	0.94 (0.67-1.33)	0.72	0.95 (0.77-1.18)	0.65
KPS>=90	0.69 (0.53-0.89)	0.005	0.52 (0.37-0.73)	0.0001	0.62 (0.5-0.76)	< 0.0001
HCT-CI>=3	1.03 (0.75-1.42)	0.83	1.21 (0.85-1.73)	0.29	1.12 (0.88-1.42)	0.36
PBSC vs. BM	1.14 (0.86-1.53)	0.36	1.54 (1.04-2.27)	0.032	1.26 (1-1.6)	0.052
RIC vs. MAC	1.03 (0.78-1.36)	0.82	1.25 (0.88-1.79)	0.22	1.14 (0.91-1.41)	0.25
Female donor to male R	0.94 (0.69-1.27)	0.68	0.96 (0.66-1.4)	0.84	0.96 (0.75-1.21)	0.72
Pat. CMV pos	1.17 (0.83-1.63)	0.37	1.39 (0.91-2.15)	0.13	1.24 (0.95-1.61)	0.12
Don. CMV pos	1.25 (0.94-1.67)	0.13	0.89 (0.63-1.24)	0.48	1.09 (0.87-1.35)	0.45
Year of HCT	0.96 (0.92-1.01)	0.15	0.97 (0.91-1.04)	0.4	0.97 (0.93-1.01)	0.15

Table 4- Continued...

	OS		GRFS		acute GVHD grade II-IV	
	HR (95% CI)	p value	HR (95% CI)	p value	HR (95% CI)	p value
Secondary AML	0.99 (0.77-1.29)	0.97	0.99 (0.77-1.27)	0.94	0.69 (0.43-1.11)	0.13
Patient age (per 10y)	1.09 (1.01-1.19)	0.034	1.06 (0.98-1.15)	0.12	1.01 (0.89-1.15)	0.87
Adverse risk group	1.42 (1.14-1.77)	0.002	1.29 (1.05-1.59)	0.015	0.9 (0.62-1.31)	0.6

First relapse vs PR	0.93 (0.75-1.16)	0.53	0.94 (0.76-1.15)	0.52	0.88 (0.62-1.26)	0.49
KPS>=90	0.62 (0.5-0.76)	< 0.0001	0.62 (0.5-0.75)	< 0.0001	1.27 (0.88-1.81)	0.2
HCT-CI>=3	1.13 (0.89-1.44)	0.32	1.06 (0.85-1.34)	0.59	0.84 (0.55-1.27)	0.4
PBSC vs. BM	1.23 (0.97-1.56)	0.086	1.34 (1.06-1.68)	0.013	1.64 (1.07-2.53)	0.024
RIC vs. MAC	1.17 (0.94-1.46)	0.16	1.03 (0.84-1.27)	0.76	1.14 (0.79-1.65)	0.47
Female donor to male R	1 (0.79-1.28)	0.98	1.03 (0.82-1.3)	0.79	0.85 (0.56-1.28)	0.44
Pat. CMV pos	1.33 (1.01-1.75)	0.042	1.17 (0.91-1.51)	0.23	0.9 (0.58-1.38)	0.62
Don. CMV pos	1.05 (0.84-1.31)	0.65	1.07 (0.87-1.32)	0.5	1.45 (0.99-2.13)	0.056
Year of HCT	0.98 (0.94-1.02)	0.42	0.98 (0.94-1.02)	0.29	0.96 (0.9-1.02)	0.19

Table 4- Continued...

	acute GVHD grade III-IV		chronic GVHD		extensive chronic GVHD	
-	HR (95% CI)	p value	HR (95% CI)	p value	HR (95% CI)	p value
Secondary AML	0.93 (0.47-1.85)	0.84	1.39 (0.87-2.22)	0.17	1.13 (0.6-2.15)	0.7
Patient age (per 10y)	0.98 (0.81-1.2)	0.88	1 (0.87-1.15)	1	1.2 (0.97-1.47)	0.095
Adverse risk group	0.52 (0.27-0.99)	0.045	0.71 (0.45-1.12)	0.14	0.96 (0.54-1.72)	0.9
First relapse vs. PR	0.88 (0.52-1.48)	0.62	0.85 (0.57-1.25)	0.4	1.1 (0.65-1.86)	0.72
KPS>=90	0.93 (0.56-1.56)	0.8	0.75 (0.51-1.09)	0.13	0.71 (0.43-1.18)	0.18

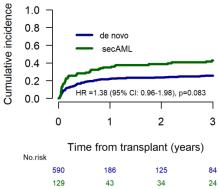
HCT-CI>=3	0.88 (0.48-1.62)	0.68	1.02 (0.66-1.59)	0.92	1.01 (0.55-1.85)	0.98
PBSC vs. BM	2.49 (1.29-4.79)	0.006	1.43 (0.95-2.15)	0.086	1.68 (0.94-2.99)	0.078
RIC vs. MAC	1.13 (0.67-1.93)	0.64	0.84 (0.57-1.25)	0.4	0.64 (0.37-1.09)	0.1
Female donor to male R	0.75 (0.39-1.45)	0.39	1.46 (0.98-2.2)	0.066	1.67 (0.96-2.92)	0.07
Pat. CMV pos	0.98 (0.52-1.84)	0.94	0.71 (0.46-1.1)	0.13	0.63 (0.36-1.11)	0.11
Don. CMV pos	1 (0.57-1.74)	1	1.22 (0.81-1.81)	0.34	0.83 (0.48-1.42)	0.49
Year of HCT	0.98 (0.89-1.07)	0.63	0.99 (0.92-1.06)	0.73	0.98 (0.89-1.09)	0.71

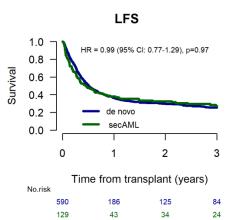
Abbreviations: AML- acute myeloid leukemia; HR-hazard ratio; CI-confidence interval; y-year; pos-positive; neg-negative; R-recipient; PRprimary refractory; MAC – myeloablative conditioning; RIC – reduced intensity conditioning; GVHD- graft versus host disease; a-acute: NRM – non-relapse mortality; LFS – leukemia-free survival; OS - overall survival; GRFS - GVHD-free and relapse-free survival; HCT-hematopoietic cell transplantation; CMV- cytomegalovirus; neg-negative; pos-positive; Don.-donor; Pat.-patient ;BM-bone marrow; PBSC-peripheral blood stem cells; BM – bone marrow; HCT-CI - hematopoietic cell transplantation specific comorbidity index; KPS-Karnofsky performance status

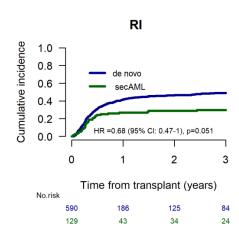
	<i>de novo</i> AML (n=393)	secAML (n=91)	Overall (n=484
Original disease	227 (59.3%)	36 (40.9%)	263 (55.8%)
Infection	75 (19.6%)	23 (26.1%)	98 (20.8%)
GVHD	36 (9.4%)	8 (9.1%)	44 (9.3%)
Non HSCT-related	14 (3.7%)	3 (3.4%)	17 (3.6%)
Other transp-related	8 (2.1%)	1 (1.1%)	9 (1.9%)
MOF	7 (1.8%)	5 (5.7%)	12 (2.5%)
Hemorrhage	4 (1%)	1 (1.1%)	5 (1.1%)
Failure/Rejection	3 (0.8%)	3 (3.4%)	6 (1.3%)
IP	3 (0.8%)	1 (1.1%)	4 (0.8%)
Other second malignancy	3 (0.8%)	2 (2.3%)	5 (1.1%)
VOD	2 (0.5%)	1 (1.1%)	3 (0.6%)
Cardiac toxicity	1 (0.3%)	0 (0%)	1 (0.2%)
CNS toxicity	0 (0%)	4 (4.5%)	4 (0.8%)
Missing	10	3	13

Table 5: Cause of Death

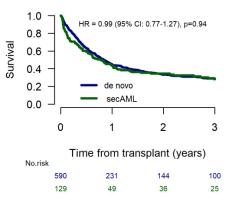
Abbreviations: secAML-secondary acute myeloid leukemia; HSCT- hematopoietic stem cell transplantation; VOD-veno occlusive disease of the

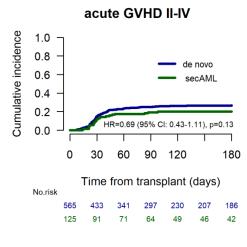

liver, GVHD-graft-versus-host disease; MOF-multiorgan failure; CNS-central nervous system; transp-transplantation; IP-interstitial pneumonitis

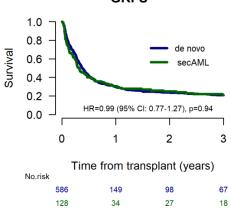

Figure Legend.

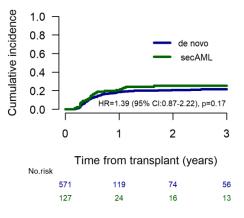

Figure 1

Outcomes of haploidentical transplantation with post-transplant cyclophosphamide in first relapse/primary refractory secondary AML *versus* first relapse/primary refractory *de novo* AML: non-relapse mortality (NRM), relapse incidence (RI), leukemia-free survival (LFS), overall survival (OS), acute graft-versus- host disease (GVHD) II-IV, chronic GVHD, and GVHD-free, relapse-free survival (GRFS).









GRFS

