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Abstract:
Risk stratification using genetics and minimal residual disease (MRD) has allowed to increase the
cure rates of pediatric acute myeloid leukemia (pedAML) up to 70% in contemporary protocols.
Nevertheless, approximately 30% of patients still experience relapse, indicating a need to optimize
stratification strategies. Recently, long non-coding RNA (lncRNA) expression has been shown to hold
prognostic power in multiple cancer types. Here, we aimed at refining relapse prediction in pedAML
using lncRNA expression. We built a relapse-related lncRNA prognostic signature, named AMLlnc69,
using 871 pedAML patients transcriptomes obtained from the Therapeutically Applicable Research To
Generate Effective Treatments (TARGET) repository. We identified a 69 lncRNA signature AMLlnc69
that is highly predictive of relapse-risk (c-index = 0.73), with area under the ROC curve (AUC)
values for predicting the 1-, 2-, and 3-year relapse-free survival (RFS) of 0.78, 0.77, and 0.77,
respectively. The internal validation using a bootstrap method (resampling times = 1000) resulted
in a c-index of 0.72 and AUC values for predicting the 1-, 2-, and 3-year RFS of 0.77, 0.76, and
0.76, respectively. Through a Cox regression analysis, AMLlnc69, NPM mutation and WBC at diagnosis
were identified as independent predictors of RFS. Finally, a nomogram was build using these two
parameters, showing a c-index of 0.80 and 0.71 after bootstrapping (n =1000). In conclusion, the
identified AMLlnc69 will, after prospective validation, add important information to guide
management of pedAML patients. The nomogram is a promising tool for easy stratification of patients
into a novel scheme of relapse-risk groups.
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Abstract 32 

Risk stratification using genetics and minimal residual disease (MRD) has allowed to 33 

increase the cure rates of pediatric acute myeloid leukemia (pedAML) up to 70% in 34 

contemporary protocols. Nevertheless, approximately 30% of patients still experience relapse, 35 

indicating a need to optimize stratification strategies. Recently, long non-coding RNA 36 

(lncRNA) expression has been shown to hold prognostic power in multiple cancer types. 37 

Here, we aimed at refining relapse prediction in pedAML using lncRNA expression. We built 38 

a relapse-related lncRNA prognostic signature, named AML
lnc69

, using 871 pedAML patients 39 

transcriptomes obtained from the Therapeutically Applicable Research To Generate Effective 40 

Treatments (TARGET) repository. We identified a 69 lncRNA signature AML
lnc69

 that is 41 

highly predictive of relapse-risk (c-index = 0.73), with area under the ROC curve (AUC) 42 

values for predicting the 1-, 2-, and 3-year relapse-free survival (RFS) of 0.78, 0.77, and 0.77, 43 

respectively. The internal validation using a bootstrap method (resampling times = 1000) 44 

resulted in a c-index of 0.72 and AUC values for predicting the 1-, 2-, and 3-year RFS of 0.77, 45 

0.76, and 0.76, respectively. Through a Cox regression analysis, AML
lnc69

, NPM mutation 46 

and WBC at diagnosis were identified as independent predictors of RFS. Finally, a 47 

nomogram was build using these two parameters, showing a c-index of 0.80 and 0.71 after 48 

bootstrapping (n =1000). In conclusion, the identified AML
lnc69

 will, after prospective 49 

validation, add important information to guide management of pedAML patients. The 50 

nomogram is a promising tool for easy stratification of patients into a novel scheme of 51 

relapse-risk groups. 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 
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 62 

Introduction 63 

The 5-year overall survival (OS) rate for pediatric acute myeloid leukemia (pedAML) is now 64 

up to 70% with the application of most contemporary protocols
1
. This improvement has been 65 

achieved through treatment intensification, the optimization of transplant procedures and 66 

supportive care, and the introduction of risk-adapted treatment strategies
2
. Risk stratification 67 

for pedAML depends mainly on the presence or absence of cytogenetic and molecular 68 

abnormalities known to be associated with the achievement of complete remission (CR), OS, 69 

and relapse-free survival (RFS)
3-5

. The achievement of minimal residual disease (MRD) 70 

during treatment has been shown to be another important risk stratification indicator enabling 71 

treatment adaptation
6-8

. Nevertheless, pedAML remains a therapeutic challenge, with high 72 

(~30%) relapse rates despite intensive therapy
9
. Relapse is a major cause of pedAML 73 

treatment failure and an indicator of poor prognosis
10

. Recent coding gene expression 74 

analyses revealed the ability of the LSC6 and LSC17 stemness signatures, reflecting the 75 

expression of 6 and 17 coding mRNAs, respectively, to predict the event-free survival (EFS) 76 

and OS of patients with pedAML
11,12

 . Similarly, the LSC47 signature was developed to 77 

predict EFS in the context of existing cytogenetic and molecular risk stratification
13

. Recently, 78 

the lncScore, a long non-coding RNA (lncRNA)-based predictor of the EFS and OS of 79 

patients with pedAML, was developed
14

. However, none of these signatures predicts RFS or 80 

has been implemented in a clinical setting. Thus, the further refinement of relapse-based risk 81 

stratification for pedAML remains an urgent need. 82 

 83 

LncRNAs are transcripts longer than 200 nucleotides that are not translated into proteins and 84 

have highly tissue-specific expression
15

. They have been shown to play important roles in 85 

normal development and the development of diseases
16,17

, including pedAML
18

. The aberrant 86 
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expression of key lncRNAs involved in hematopoietic stem cell maintenance and 87 

differentiation has been shown to result in the development of hematological 88 

malignancies
19,20

. LncRNA expression also has prognostic power for malignancies such as 89 

adult AML
21

, breast cancer
22

, and neuroblastoma
23

. Hence, the inclusion of lncRNA 90 

expression in pedAML risk stratification could add value for RFS prediction. 91 

 92 

In this study, we aimed to identify an lncRNA signature that predicts pedAML RFS using 93 

publicly available RNA sequencing (RNA-seq) data from patients with pedAML from the 94 

Therapeutically Applicable Research to Generate Effective Treatments (TARGET) repository, 95 

including cases from Children’s Oncology Group (COG) studies AAML0531
24

 and 96 

AAML1031
25,26

. 97 

 98 

Methods 99 

TARGET data acquisition 100 

RNA-seq data and corresponding clinical information on patients with pedAML were 101 

retrieved from the TARGET repository (https://ocg.cancer.gov/programs/target) and 102 

downloaded from the Genomic Data Commons (https://portal.gdc.cancer.gov). We included 103 

pedAML cases from COG studies AAML0531
24

 and AAML1031
25,26

. During enrollment in 104 

those clinical trials, which were conducted in accordance with the Declaration of Helsinki, 105 

participants provided written informed consent to the use of their data for correlative 106 

biological studies. We excluded cases evaluated by low-depth sequencing and sequencing 107 

data obtained at non-diagnostic time points, such as after treatment or relapse. As we focused 108 

on relapse, only patients whose first event was relapse and those who were censored were 109 

included. Patients from the AAML1031 study were allocated to the discovery cohort (n = 871) 110 

and those from the AAML0531 study were allocated to the validation cohort (n = 158; 111 
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Supplemental Figure 1). Detailed information on each of the included patients is provided in 112 

Supplemental Table 1, and the value labels used in Supplemental Table 1 are provided in 113 

Supplemental Table 2. Gene annotation was performed using Homo_sapiens.GRCh38.110 114 

from the Ensembl project (http://www.ensembl.org)
27

. 115 

 116 

lncRNA prognostic signature construction 117 

Univariate Cox regression analysis was used to identify lncRNAs associated significantly 118 

with RFS (p < 0.05). Then, least absolute shrinkage and selection operator (LASSO) Cox 119 

regression was used to further filter for lncRNAs associated strongly with RFS, and to 120 

estimate their coefficients for linear predictor establishment. During this process, the optimal 121 

parameter ‘λ’ was obtained through cross‑validation to maintain equilibrium between model 122 

deviation and variance. The caret, tidyverse, tibble, data.table, survival, survminer, glmnet, 123 

pbapply, and magrittr R packages were used for these analyses. Next, an outcome-oriented 124 

method was applied using the surv_cutpoint function of the survminer R package to 125 

determine an optimal cutoff value that maximized survival differences between low- and 126 

high-risk lncRNA signature groups. Finally, the risk score distribution was plotted and RFS 127 

status mapping was performed to further analyze the influence of the selected signature on 128 

RFS. 129 

 130 

Outcome analysis and validation 131 

Using the survival and survminer R packages and the Kaplan–Meier (KM) method, RFS and 132 

OS probabilities were estimated. Standard errors were calculated using the Greenwood 133 

formula, and the data were compared using the log-rank test. Receiver operating 134 

characteristic (ROC) curves were drawn and the areas under the curves (AUCs) were 135 

calculated using the survminer and timeROC R package to assess model performance at 1, 2, 136 
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and 3 years. Concordance (c)-indices were calculated for signature assessment using the 137 

concordance function
28

. The bootstrap method, based on 1000-fold resampling, was used for 138 

internal validation
29,30

. Univariate and multivariate Cox regression analyses were performed 139 

to obtain independent prognostic values for the lncRNA signature, and c-indices of these 140 

values were calculated. Finally, a nomogram was generated using the regplot, survival, rms, 141 

ggDCA, and timeROC R packages
31

. The coefficients of lncRNAs in the model generated 142 

from discovery cohort data were used for external validation. 143 

 144 

Comparison of clinical characteristics 145 

Fisher's exact test and the χ
2
 test were used to assess distributional differences in categorical 146 

data between the low- and high-risk groups. A heatmap of these differences was generated 147 

using the ComplexHeatmap R package. The normality of data distributions was assessed 148 

using the D'Agostino–Pearson, Anderson–Darling, Shapiro–Wilk, and Kolmogorov–Smirnov 149 

tests. Non-normally distributed quantitative data were evaluated using the Mann–Whitney U 150 

test. Box plots of quantitative results were generated using GraphPad Prism 9. 151 

 152 

Functional and biological pathway enrichment analyses 153 

Gene set enrichment analysis (GSEA) was performed using the limma, org.Hs.eg.db, 154 

clusterProfiler, and enrichplot R packages (p < 0.05)
32

. The hallmark, gene ontology (GO), 155 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets were downloaded from 156 

MSigDB (http://www.broadinstitute.org/msigdb)
33

 and used for this purpose. 157 

 158 

Results 159 

Prognostic lncRNA signature establishment  160 
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The characteristics of patients in the discovery and validation cohorts are summarized in 161 

Supplemental Table 3, and RFS in the two cohorts is illustrated in Supplemental Figure 2. 162 

Univariate Cox regression analysis of discovery cohort data yielded 1751 relapse-related 163 

lncRNAs (Supplemental Table 4). To improve the prediction accuracy and avoid overfitting, 164 

a LASSO Cox regression analysis was performed to construct a linear prognostic model 165 

(AML
lnc69

), in which 69 lncRNAs were retained (Figure 1A, Supplemental Figure 3, 166 

Supplemental Table 5,). AML
lnc69 

risk group information, survival data, and expression levels 167 

of the lncRNAs used in model construction are provided for all patients in the discovery 168 

cohort in Supplemental Table 6. An optimal cutoff value was calculated using the 169 

surv_cutpoint function in the survminer R package and an outcome-oriented method that 170 

enabled patient assignment to low- and high-risk AML
lnc69 

groups. The risk score distribution 171 

is shown in Figure 1B. The RFS status map for all patients with pedAML shows that the 172 

proportion of patients with relapse increases with the AML
lnc69 

score (Figure 1C). 173 

 174 

Signature validation 175 

KM survival curves further illustrated that the RFS rate was significantly lower for high-risk 176 

AML
lnc69

 patients than low-risk AML
lnc69

 patients in the discovery cohort  (Figure 2A). In 177 

addition, the AML
lnc69

 signature was significantly predictive of OS (Figure 2B). To further 178 

substantiate the predictive value of the model, we performed ROC analyses with the 179 

calculation of AUCs for the prediction of 1-, 2-, and 3-year RFS; these values were 0.78, 0.77, 180 

and 0.77, respectively, with a corresponding c-index of 0.73 (Figure 2C). Internal validation 181 

yielded a c-index of 0.72 and AUCs for the prediction of 1-, 2-, and 3-year RFS of 0.77, 0.76, 182 

and 0.76, respectively (Supplemental Table 7). As some patients underwent hematopoietic 183 

stem cell transplantation (HSCT) during their first CR periods, which might confound the 184 

survival analysis, separate KM RFS curves were generated for patients who did and did not 185 
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undergo this procedure. These curves illustrated that the model remains valid irrespective of 186 

HSCT performance (Figure 3A, B). 187 

 188 

The potential of the LSC6
11

, LSC17
12

, and LSC47
13

 mRNA signatures and the lncScore
14

 for 189 

pedAML risk stratification has been demonstrated. As these signatures were generated for the 190 

prediction of OS and EFS, we tested their predictive value for RFS in the discovery cohort. 191 

Our analyses confirmed this value. KM plots showed that all three models successfully 192 

stratified patients based on RFS. However, acceptable AUCs (~0.65) for 1-, 2-, and 3-year 193 

RFS prediction were obtained only for the LSC47 signature and lncScore, and these values 194 

were significantly lower than those obtained for the AML
lnc69

 (Supplemental Figure 4). 195 

 196 

Next, AML
lnc69 

was validated with an independent validation cohort (n = 158 patients with 197 

pedAML; Supplemental Figure 1). Patients in the validation cohort were categorized into 198 

low- and high-risk groups based on the AML
lnc69

, yielding AUCs of 0.66, 0.68, and 0.70 for 199 

1-, 2-, and 3-year RFS prediction, respectively (Supplemental Figure 5A, B). As the benefit 200 

of adding gemtuzumab ozogamicin was a randomized question in this study cohort, we 201 

evaluated if  AML
lnc69

 was predictive for RFS on each of the randomization arms. 202 

Interestingly, KM survival analysis illustrated that AML
lnc69

 remained predictive, irrespective 203 

of gemtuzumab ozogamicin randomization arm (Supplemental Figure 5C, D). 204 

 205 

Subsequently, we plotted the distribution of cytogenetic/molecular risk for the AML
lnc69 

low- 206 

and high-risk groups in the discovery cohort. Importantly, a significant proportion of 207 

conventionally stratified standard-risk patients could be reclassified as high-risk according to 208 

the AML
lnc69

 (Figure 3C). Furthermore, KM plots showed that the AML
lnc69

 could be used to 209 

reclassify patients in all (low, standard, and high) traditional risk groups based on 210 
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cytogenetic/molecular characteristics (Figure 3D–F, Supplemental Figure 6). The frequency 211 

distributions of patient characteristics according to HSCT administration and AML
lnc69

 risk 212 

group are shown in Supplemental Table 8. 213 

Altogether, these results illustrated that AML
lnc69

 use could improve traditional 214 

cytogenetic/molecular risk stratification, better defining low-risk and high-risk patients in 215 

terms of RFS. 216 

 217 

AML
lnc69

 is an independent prognostic factor 218 

To evaluate whether the AML
lnc69

 is an independent prognostic factor, we first performed 219 

Cox regression analysis and calculated c-indices for the discovery cohort. Due to the 220 

requirement for complete data, 704 patients were included in this analysis. Univariate Cox 221 

regression analysis indicated that age, white blood cell (WBC) count at the time of diagnosis, 222 

presence of core binding factor (CBF), KMT2A, t(6;11)(q27;q23), t(9;11)(p22;q23), 223 

t(10;11)(p11.2;q23), trisomy 21, nucleophosmin (NPM) mutation, MRD at the end of 224 

induction course 1, MRD at end of induction course 2, and the AML
lnc69

 signature were 225 

prognostic factors (Figure 4A, Supplemental Table 9). In this analysis, AML
lnc69

 performed 226 

well in distinguishing low- and high-risk individuals in all subgroups (defined according to 227 

genetics and MRD; Supplemental Figure 7), although some of these subgroups were small (n 228 

< 5) and these results should be interpreted with caution. Next, significant variables were 229 

examined further in a multivariate Cox analysis, which showed that the AML
lnc69

 signature, 230 

NPM mutation, and WBC count at the time of diagnosis were independent prognostic factors 231 

(Figure 4B). C-indices indicated that AML
lnc69

 had better RFS-predictive value than did NPM 232 

mutation and WBC count at the time of diagnosis (Supplemental Figure 8). Furthermore, 233 

AML
lnc69 

was an independent prognostic factor in the validation cohort, as demonstrated by 234 

univariate [hazard ratio (HR), 3.89; 95% confidence interval (CI), 2.04–7.44; p < 0.001] and 235 
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multivariate (HR, 3.56; 95% CI, 1.85–6.84; p < 0.001) Cox regression analyses 236 

(Supplemental Table 10). 237 

 238 

Based on the multivariate Cox regression analysis results, a nomogram was established using 239 

the AML
lnc69

, NPM mutation, and WBC count at the time of diagnosis (Figure 4C). Decision 240 

curve analysis indicated that the RFS-predictive effect of the three factors combined was 241 

superior to those of the individual factors (Supplemental Figure 9A). AUCs for the prediction 242 

of 1-, 2-, and 3-year RFS were 0.76, 0.75, and 0.75, respectively, and the c-index was 0.80 243 

(Supplemental Figure 9B). Internal validation yielded a c-index of 0.71 and AUCs for 1-, 2-, 244 

and 3-year RFS prediction of 0.76, 0.75, and 0.75, respectively. Calibration curves showed 245 

good consistency of these three nomogram predictions with actual observations (Figure 4D). 246 

Table 1 provides an overview of all combinations possible and 1-, 2, and 3-year cumulative 247 

pedAML relapse risk prediction according to the nomogram. As an example, a patient with 248 

pedAML in the AML
lnc69 

high-risk group (100 points) with no NPM mutation (60 points) and 249 

a WBC count < 50 at the time of diagnosis (0 point) would have a 76.8% cumulative risk of 250 

relapse at 3 years. 251 

 252 

Comparison of characteristics and biological pathway enrichment 253 

Differences in clinical characteristics between the low- and high-risk AML
lnc69

 groups were 254 

examined (Supplemental Table 11). Relative to the AML
lnc69

 low-risk group, the AML
lnc69

 255 

high-risk group contained significantly more cases with t(6;11)(q27;q23), t(9;11)(p22;q23), 256 

t(10;11)(p11.2;q23), t(11;19)(q23;p13.1), trisomy 21, KMT2A, MRD at the end of courses 1 257 

and 2, and HSCT, as well as greater cytogenetic complexity, a younger age at diagnosis, a 258 

higher WBC count at the time of diagnosis, and a higher percentage of leukemic bone-259 

marrow blasts (Figure 5). 260 
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 261 

To explore the biological pathways associated with the AML
lnc69

 signature, we performed 262 

GSEA using the cancer GO, KEGG, and hallmark gene sets. The five most significant results 263 

are shown in Supplemental Figure 10, and the clustered pathways are provided in 264 

Supplemental Tables 12–14 encompasses all the clustered pathways. The GSEA analysis 265 

revealed the significant involvement of the Hedgehog and KRAS pathways and epithelial–266 

mesenchymal transition (EMT) in AML
lnc69

-based high risk. 267 

 268 

Discussion 269 

The survival of patients with pedAML has increased steadily in recent decades, due in large 270 

part to the incorporation of risk stratification based on parameters such as cytogenetic and 271 

molecular abnormalities and MRD. Currently, pedAML relapse occurs in approximately one-272 

third of patients, which is a major obstacle in treatment and adversely impacts OS
9,10

. AML 273 

relapse is attributable primarily to the poor responsiveness of therapy-resistant leukemic stem 274 

cells (LSCs) to common chemotherapeutic agents
34

. Treatments for pedAML relapse include 275 

HSCT and reinduction regimens, but their inevitable generation of side effects remains a 276 

challenge
9
. 277 

 278 

No robust prognostic model for the prediction of pedAML relapse is currently available. 279 

Several models based on EFS have been developed for pedAML risk stratification. However, 280 

due to the inclusion of relapse, induction failure, and death at first event, the LSC6, LSC17, 281 

and LSC47 signature and lncScore predicted RFS in the discovery cohort inefficiently. 282 

Moreover, we argue that induction failure should be included in analyses as a binary variable, 283 

regardless of its temporal span. For these reasons, we excluded induction failure and death, 284 

and focused solely on RFS. 285 
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 286 

In this study, we demonstrated that the AML
lnc69

 prognostic signature strengthens risk 287 

prediction, even in multivariate analysis including established risk-stratifying factors. Among 288 

the lncRNAs constituting the signature, MIR100HG (ENSG00000255015)
35

, MIR17HG 289 

(ENSG00000215417)
36

, MALAT1 (ENSG00000251562)
37-39

, and ZFAS1 290 

(ENSG00000177410)
40-43

 were previously shown to be associated with AML; the 291 

associations of the other 65 lncRNAs with AML are novel. In contrast to the use of median 292 

values as dichotomization standards in most studies, we used an outcome-oriented method to 293 

identify optimal cutoff values in this study, thereby maximizing the distinction between low- 294 

and high-risk groups in terms of RFS. The good RFS-predicting performance of AML
lnc69

 295 

was demonstrated through KM survival plots and ROC curves. Internal validation is crucial 296 

for the estimation of a model’s generalizability
44

. Compared with other internal validation 297 

methods, bootstrap analysis not only enables the use of the entire sample for validation, but 298 

also provides nearly unbiased estimates of model performance
45

. The favorable results of 299 

bootstrap-based internal validation in this study provide strong evidence for the reliability of 300 

model construction. As some high-risk patients underwent HSCT to improve RFS
46

, we split 301 

patients in the discovery cohort into HSCT and no-HSCT groups. The model retained its 302 

predictive value in both scenarios. Moreover, external validation must be performed to 303 

determine a model’s reproducibility and generalizability to other samples
47

. Thus, data from 304 

the AAML0531 study, distinct from the discovery cohort, was employed for external 305 

validation in this study. Although this cohort was small and significantly more heterogeneous 306 

than the discovery cohort, the use of the AML
lnc69

 to predict RFS in this cohort was 307 

successful. The AUCs obtained in this study were satisfactory, indicating the reproducibility 308 

of AML
lnc69 

use in actual practice. The AML
lnc69

 remained predictive independently of 309 

gemtuzumab ozogamicin administration in the AAML0531 cohort; no such analysis could be 310 
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performed for sorafenib or bortezomib administration in the AAML1031 cohort due to the 311 

lack of information. With an ever-growing number of pedAML therapeutics available 312 

(including bcl-2 protein family and DNA methyltransferase inhibitors), the evaluation of the 313 

predictive value of AML
lnc69

 in this evolving therapeutic landscape would be of interest. 314 

 315 

Recently, Farrar et al
14

 constructed a lncRNA signature (lncScore) for pedAML with a 316 

completely different set of lncRNAs than used in the present study, which might be explained 317 

by some notable differences between the studies. First, lncScore was built based on EFS, 318 

while AML
lnc69

 was developed using RFS, which thus limits the direct comparison of the 319 

performance of both signatures. Second, Farrar et al
14

 initially sought to identify lncRNAs 320 

that were differentially expressed (DE) in the bone marrow of patients with pedAML and that 321 

of healthy individuals to construct a model based on the upregulation of these lncRNAs in 322 

pedAML. However, the healthy individuals were actually post-induction patients, whose 323 

bone marrow may differ substantially from normal
48

. Third, the selection of DE lncRNAs 324 

may have led to the overlooking of some lncRNAs that actually impact prognosis. Thus, 325 

instead of performing differential expression analysis, we directly employed the entire 326 

lncRNAome for model construction. In addition, Farrar et al
14

 constructed a regression model 327 

based on EFS, whereas we focused on RFS, and they included samples with low-depth 328 

sequencing, whereas we excluded such samples due to the usually low expression of 329 

lncRNAs. Despite these differences in composition, construction criteria, and endpoints, 330 

however, the two signatures are associated with very similar pathways in GSEAs (data not 331 

shown). 332 

 333 

Surprisingly, the standard-risk group (as defined in the TARGET cohort based on cytogenic 334 

and molecular characteristics) had worse RFS than did the high-risk group. Aplenc et al.
26

 335 
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reported that approximately 78% of patients in the AAML1031 study were allocated to the 336 

low-risk group, with the remainder allocated to the high-risk group. However, a large number 337 

of these patients were reassigned to the standard-risk group in the TARGET database with the 338 

application of additional cytogenetic and molecular risk stratification criteria. In addition, 339 

‘AML
lnc69

-Low_Risk group-High’ patients, the majority of whom underwent HSCT, had 340 

better RFS than did ‘AML
lnc69

-Low_Risk group-Low/Standard’ patients in this study. A 341 

portion of patients that were initially classified as ‘Risk group-Low/Standard’, missing HSCT, 342 

would have been reclassified as high risk, potentially explaining the superior RFS in 343 

‘AML
lnc69

-Low_Risk group-High’ patients relative to that of patients in the other two groups. 344 

Due to the retrospective nature of this study and the complexity of evolving risk stratification, 345 

however, complete clarification of these observed differences is difficult. Nevertheless, the 346 

results clearly suggest that all stratification schemes, including that used in the AAML1031 347 

study and traditional cytogenetic and molecular risk stratification, have limitations resulting 348 

in the under- or overestimation of the pedAML relapse risk. Importantly, the AML
lnc69

 349 

successfully stratified patients in the three TARGET risk groups (low, standard, and high) 350 

based on their RFS. 351 

 352 

The AML
lnc69

 was shown to be an independent predictor of RFS in the discovery and 353 

validation cohorts. With the continued undertaking of large -omics studies and identification 354 

of novel risk-stratifying parameters, such as UBTF-TD
49

 and GLIS2-fusions
50,51

, the 355 

assessment of the predictive value of AML
lnc69

 in prospective clinical studies
52,53

 356 

documenting those molecular aberrations would be of great interest. Based on the results of 357 

the multivariate Cox regression analysis of discovery cohort data, we developed a nomogram 358 

for the intuitive prediction of the RFS of patients with pedAML that includes the AML
lnc69

, 359 

NPM mutation, and WBC count at the time of diagnosis. Relative to the isolated application 360 
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of each factor, the nomogram provides for more-refined estimation of 1-, 2-, and 3-year 361 

cumulative relapse risks. With further independent validation, this tool could offer valuable 362 

insights for prognostic assessment and therapeutic decision making in the clinical context. 363 

 364 

The GSEA performed in this study revealed that Hedgehog- and KRAS-associated pathways 365 

and EMT played important roles in the AML
lnc69

-based estimation of high relapse risk. The 366 

Hedgehog signaling pathway plays a fundamental role in LSC quiescence and may be an 367 

effective target for the prevention of pedAML relapse
54,55

. Similarly, KRAS contributes to the 368 

emergence of stemness traits
56

, and KRAS mutations are frequent in patients with pedAML 369 

and associated with worse outcomes
57-59

. EMT is a well-known cellular program that is 370 

crucial for the relapse and metastasis of various tumors, and it plays a key role in the 371 

progression and relapse of AML
60-62

. 372 

 373 

In conclusion, we generated a comprehensive prognostic model including 69 lncRNAs for the 374 

prediction of the RFS of patients with pedAML. To our knowledge, this study was the first 375 

comprehensive evaluation of relationships between lncRNAs and RFS in this population. We 376 

provide evidence that our model could further refine current risk stratification. Its application 377 

requires the design of a microarray or targeted RNA sequencing panel, which is currently the 378 

standard of practice in many clinical laboratories handling oncological diagnosis
63

. Although 379 

the AML
lnc69

 is associated with several known predictive markers, it incorporates more 380 

information than provided by these individual factors. Thus, AML
lnc69

 use may avoid the 381 

need to perform numerous molecular and cellular assays, as is currently done for the full risk 382 

classification of patients with pedAML, and thereby be a great asset in resource-limited 383 

circumstances. Furthermore, samples from patients' bone marrow or peripheral blood, 384 

routinely collected during standard pedAML diagnosis, can be used. This lack of need for 385 
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additional sample collection makes this method straightforward, cost effective, and easily 386 

implementable. Further validation of the AML
lnc69

 with large independent cohorts is needed 387 

to definitively confirm its clinical value. 388 

 389 

Contributions 390 

Z.R, J.V, and T.L drafted the manuscript. Z.R, J.V and T.L designed the figures. All authors 391 

critically revised the manuscript and approved the final version. 392 

None of the authors has a relevant conflict of interest.  393 

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024012667/2222706/bloodadvances.2024012667.pdf by guest on 06 M

ay 2024



    17 

 

References 394 

1. Zwaan CM, Kolb EA, Reinhardt D, et al. Collaborative Efforts Driving Progress in 395 

Pediatric Acute Myeloid Leukemia. J Clin Oncol. 2015;33(27):2949-2962. 396 

2. Elgarten CW, Aplenc R. Pediatric acute myeloid leukemia: updates on biology, risk 397 

stratification, and therapy. Current Opinion in Pediatrics. 2020;32(1):57-66. 398 

3. Shiba N. Comprehensive molecular understanding of pediatric acute myeloid 399 

leukemia. Int J Hematol. 2023;117(2):173-181. 400 

4. de Rooij JD, Zwaan CM, van den Heuvel-Eibrink M. Pediatric AML: From Biology 401 

to Clinical Management. J Clin Med. 2015;4(1):127-149. 402 

5. Creutzig U, Zimmermann M, Reinhardt D, et al. Changes in cytogenetics and 403 

molecular genetics in acute myeloid leukemia from childhood to adult age groups. Cancer. 404 

2016;122(24):3821-3830. 405 

6. Loken MR, Alonzo TA, Pardo L, et al. Residual disease detected by multidimensional 406 

flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a 407 

report from Children's Oncology Group. Blood. 2012;120(8):1581-1588. 408 

7. Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in 409 

AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 410 

2018;131(12):1275-1291. 411 

8. Tierens A, Bjorklund E, Siitonen S, et al. Residual disease detected by flow cytometry 412 

is an independent predictor of survival in childhood acute myeloid leukaemia; results of the 413 

NOPHO-AML 2004 study. Br J Haematol. 2016;174(4):600-609. 414 

9. Egan G, Tasian SK. Relapsed pediatric acute myeloid leukaemia: state-of-the-art in 415 

2023. Haematologica. 2023;108(9):2275-2288. 416 

10. Hoffman AE, Schoonmade LJ, Kaspers GJ. Pediatric relapsed acute myeloid 417 

leukemia: a systematic review. Expert Rev Anticancer Ther. 2021;21(1):45-52. 418 

11. Elsayed AH, Rafiee R, Cao X, et al. A six-gene leukemic stem cell score identifies 419 

high risk pediatric acute myeloid leukemia. Leukemia. 2020;34(3):735-745. 420 

12. Duployez N, Marceau-Renaut A, Villenet C, et al. The stem cell-associated gene 421 

expression signature allows risk stratification in pediatric acute myeloid leukemia. Leukemia. 422 

2019;33(2):348-357. 423 

13. Huang BJ, Smith JL, Farrar JE, et al. Integrated stem cell signature and cytomolecular 424 

risk determination in pediatric acute myeloid leukemia. Nat Commun. 2022;13(1):5487. 425 

14. Farrar JE, Smith JL, Othus M, et al. Long Noncoding RNA Expression Independently 426 

Predicts Outcome in Pediatric Acute Myeloid Leukemia. J Clin Oncol. 2023:JCO2201114. 427 

15. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and 428 

development. Nat Rev Genet. 2014;15(1):7-21. 429 

16. Esteller M. Non-coding RNAs in human disease. Nature Reviews Genetics. 430 

2011;12(12):861-874. 431 

17. Batista PJ, Chang HY. Long Noncoding RNAs: Cellular Address Codes in 432 

Development and Disease. Cell. 2013;152(6):1298-1307. 433 

18. Neyazi S, Ng M, Heckl D, Klusmann JH. Long noncoding RNAs as regulators of 434 

pediatric acute myeloid leukemia. Mol Cell Pediatr. 2022;9(1):10. 435 

19. Delas MJ, Sabin LR, Dolzhenko E, et al. lncRNA requirements for mouse acute 436 

myeloid leukemia and normal differentiation. Elife. 2017;6. 437 

20. Nobili L, Lionetti M, Neri A. Long non-coding RNAs in normal and malignant 438 

hematopoiesis. Oncotarget. 2016;7(31):50666-50681. 439 

21. Garzon R, Volinia S, Papaioannou D, et al. Expression and prognostic impact of 440 

lncRNAs in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the 441 

United States of America. 2014;111(52):18679-18684. 442 

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024012667/2222706/bloodadvances.2024012667.pdf by guest on 06 M

ay 2024



    18 

 

22. Liu DX. Identification of a prognostic LncRNA signature for ER-positive, ER-443 

negative and triple-negative breast cancers. Breast Cancer Research and Treatment. 444 

2020;183(1):95-105. 445 

23. Sathipati SY, Sahu D, Huang HC, Lin YC, Ho SY. Identification and characterization 446 

of the lncRNA signature associated with overall survival in patients with neuroblastoma. 447 

Scientific Reports. 2019;9. 448 

24. Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and 449 

adolescents with de novo acute myeloid leukemia improves event-free survival by reducing 450 

relapse risk: results from the randomized phase III Children's Oncology Group trial 451 

AAML0531. J Clin Oncol. 2014;32(27):3021-3032. 452 

25. Pollard JA, Alonzo TA, Gerbing R, et al. Sorafenib in Combination With Standard 453 

Chemotherapy for Children With High Allelic Ratio FLT3/ITD+ Acute Myeloid Leukemia: 454 

A Report From the Children's Oncology Group Protocol AAML1031. J Clin Oncol. 455 

2022;40(18):2023-2035. 456 

26. Aplenc R, Meshinchi S, Sung L, et al. Bortezomib with standard chemotherapy for 457 

children with acute myeloid leukemia does not improve treatment outcomes: a report from 458 

the Children's Oncology Group. Haematologica. 2020;105(7):1879-1886. 459 

27. Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. Nucleic Acids Res. 460 

2022;50(D1):D988-D995. 461 

28. Harrell FE, Jr., Lee KL, Mark DB. Multivariable prognostic models: issues in 462 

developing models, evaluating assumptions and adequacy, and measuring and reducing errors. 463 

Stat Med. 1996;15(4):361-387. 464 

29. Efron B. 1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK 465 

AT THE JACKKNIFE. Annals of Statistics. 1979;7(1):1-26. 466 

30. Steyerberg EW, Harrell FE, Jr. Prediction models need appropriate internal, internal-467 

external, and external validation. J Clin Epidemiol. 2016;69:245-247. 468 

31. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology: more 469 

than meets the eye. Lancet Oncol. 2015;16(4):e173-180. 470 

32. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a 471 

knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad 472 

Sci U S A. 2005;102(43):15545-15550. 473 

33. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. 474 

Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739-1740. 475 

34. Stelmach P, Trumpp A. Leukemic stem cells and therapy resistance in acute myeloid 476 

leukemia. Haematologica. 2023;108(2):353-366. 477 

35. Emmrich S, Streltsov A, Schmidt F, Thangapandi VR, Reinhardt D, Klusmann JH. 478 

LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. 479 

Mol Cancer. 2014;13:171. 480 

36. Yan J, Yao L, Li P, Wu G, Lv X. Long non-coding RNA MIR17HG sponges 481 

microRNA-21 to upregulate PTEN and regulate homoharringtonine-based chemoresistance 482 

of acute myeloid leukemia cells. Oncol Lett. 2022;23(1):24. 483 

37. Jin J, Fu L, Hong P, Feng W. MALAT-1 regulates the AML progression by 484 

promoting the m6A modification of ZEB1. Acta Biochim Pol. 2023;70(1):37-43. 485 

38. Sheng XF, Hong LL, Li H, Huang FY, Wen Q, Zhuang HF. Long non-coding RNA 486 

MALAT1 modulate cell migration, proliferation and apoptosis by sponging microRNA-146a 487 

to regulate CXCR4 expression in acute myeloid leukemia. Hematology. 2021;26(1):43-52. 488 

39. Hu N, Chen L, Wang C, Zhao H. MALAT1 knockdown inhibits proliferation and 489 

enhances cytarabine chemosensitivity by upregulating miR-96 in acute myeloid leukemia 490 

cells. Biomed Pharmacother. 2019;112:108720. 491 

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024012667/2222706/bloodadvances.2024012667.pdf by guest on 06 M

ay 2024



    19 

 

40. Su L, Kong H, Wu F, et al. Long non-coding RNA zinc finger antisense 1 functions as 492 

an oncogene in acute promyelocytic leukemia cells. Oncol Lett. 2019;18(6):6331-6338. 493 

41. Guo H, Wu L, Zhao P, Feng A. Overexpression of long non-coding RNA zinc finger 494 

antisense 1 in acute myeloid leukemia cell lines influences cell growth and apoptosis. Exp 495 

Ther Med. 2017;14(1):647-651. 496 

42. Li Q, Wang J. Long noncoding RNA ZFAS1 enhances adriamycin resistance in 497 

pediatric acute myeloid leukemia through the miR-195/Myb axis. RSC Adv. 498 

2019;9(48):28126-28134. 499 

43. Gan S, Ma P, Ma J, et al. Knockdown of ZFAS1 suppresses the progression of acute 500 

myeloid leukemia by regulating microRNA-150/Sp1 and microRNA-150/Myb pathways. Eur 501 

J Pharmacol. 2019;844:38-48. 502 

44. Steyerberg EW. Clinical Prediction Models: A Practical Approach to 503 

Development, Validation, and Updating.: New York: Springer; 2019. 504 

45. Harrell FE, Jr. Regression Modeling Strategies: With Applications to Linear 505 

Models, Logistic Regression, and Survival Analysis, 2nd Edition. : New York: Springer; 506 

2015. 507 

46. Cooper TM, Ries RE, Alonzo TA, et al. Revised Risk Stratification Criteria for 508 

Children with Newly Diagnosed Acute Myeloid Leukemia: A Report from the Children's 509 

Oncology Group. Blood. 2017;130. 510 

47. Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of 511 

prognostic models: what, why, how, when and where? Clin Kidney J. 2021;14(1):49-58. 512 

48. dbGap. TARGET: Acute Myeloid Leukemia (AML). dbGaP Study Accession: 513 

phs000465v19p8. https://www.ncbi.nlm.nih.gov/projects/gap/cgi-514 

bin/study.cgi?study_id=phs000465.v19.p8 515 

49. Umeda M, Ma J, Huang BJ, et al. Integrated Genomic Analysis Identifies UBTF 516 

Tandem Duplications as a Recurrent Lesion in Pediatric Acute Myeloid Leukemia. Blood 517 

Cancer Discov. 2022;3(3):194-207. 518 

50. Conneely SE, Stevens AM. Acute Myeloid Leukemia in Children: Emerging 519 

Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep. 2021;23(2):16. 520 

51. Aid Z, Robert E, Lopez CK, et al. High caspase 3 and vulnerability to dual BCL2 521 

family inhibition define ETO2::GLIS2 pediatric leukemia. Leukemia. 2023;37(3):571-579. 522 

52. Karlsson L, Cheuk D, De Moerloose B, et al. Characteristics and outcome of primary 523 

resistant disease in paediatric acute myeloid leukaemia. Br J Haematol. 2023;201(4):757-765. 524 

53. Kaspers GJL, Wijnen NE, Koedijk JB, et al. Chip-AML22 Master Protocol: An Open-525 

Label Clinical Trial in Newly Diagnosed Pediatric De Novo Acute Myeloid Leukemia (AML) 526 

Patients Including a Linked Phase II Trial with Quizartinib in FLT3-ITD/ NPM1wt Patients - 527 

a Study By the NOPHO-DB-SHIP Consortium. Blood. 2023;142(Supplement 1):1532-1532. 528 

54. Pession A, Lonetti A, Bertuccio S, Locatelli F, Masetti R. Targeting Hedgehog 529 

pathway in pediatric acute myeloid leukemia: challenges and opportunities. Expert Opin Ther 530 

Targets. 2019;23(2):87-91. 531 

55. Lainez-Gonzalez D, Serrano-Lopez J, Alonso-Dominguez JM. Understanding the 532 

Hedgehog Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Necessary Step 533 

toward a Cure. Biology (Basel). 2021;10(4). 534 

56. Chippalkatti R, Abankwa D. Promotion of cancer cell stemness by Ras. Biochem Soc 535 

Trans. 2021;49(1):467-476. 536 

57. Bolouri H, Farrar JE, Triche T, Jr., et al. The molecular landscape of pediatric acute 537 

myeloid leukemia reveals recurrent structural alterations and age-specific mutational 538 

interactions. Nat Med. 2018;24(1):103-112. 539 

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024012667/2222706/bloodadvances.2024012667.pdf by guest on 06 M

ay 2024

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000465.v19.p8
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000465.v19.p8


    20 

 

58. Mustafa Ali MK, Williams MT, Corley EM, AlKaabba F, Niyongere S. Impact of 540 

KRAS and NRAS mutations on outcomes in acute myeloid leukemia. Leuk Lymphoma. 541 

2023;64(5):962-971. 542 

59. Ball BJ, Hsu M, Devlin SM, et al. The prognosis and durable clearance of RAS 543 

mutations in patients with acute myeloid leukemia receiving induction chemotherapy. Am J 544 

Hematol. 2021;96(5):E171-E175. 545 

60. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-546 

mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-547 

84. 548 

61. Chen SC, Liao TT, Yang MH. Emerging roles of epithelial-mesenchymal transition in 549 

hematological malignancies. J Biomed Sci. 2018;25(1):37. 550 

62. Carmichael CL, Wang J, Nguyen T, et al. The EMT modulator SNAI1 contributes to 551 

AML pathogenesis via its interaction with LSD1. Blood. 2020;136(8):957-973. 552 

63. Tiwari M. Microarrays and cancer diagnosis. J Cancer Res Ther. 2012;8(1):3-10. 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024012667/2222706/bloodadvances.2024012667.pdf by guest on 06 M

ay 2024



    21 

 

Figure legends 572 

 573 

Figure 1. Identification of the 69 relapse-related lncRNAs prognostic signature for 574 

pedAML patients. (A) Coefficients of the 69 lncRNAs originated from the LASSO Cox 575 

regression. (B) Risk score distribution and RFS status map of pedAML patients. LncRNA, 576 

long non-coding RNA; LASSO, least absolute shrinkage and selection operator; RFS, 577 

relapse-free survival; pedAML, pediatric acute myeloid leukemia. 578 

 579 

Figure 2. Validation of AML
lnc69

. (A, B) Kaplan–Meier survival curve of pedAML patients’ 580 

RFS (A) and OS (B) in the low- and high-risk groups. (C) ROC curves and AUCs for 1-, 2-, 581 

and 3-year RFS. PedAML, pediatric acute myeloid leukemia; RFS, relapse-free survival; OS, 582 

overall survival; ROC, receiver operating characteristic; AUC, area under the curve. 583 

 584 

Figure 3. The performance of AML
lnc69

 in terms of whether or not undergoing HSCT in 585 

1st CR and cytogenetic/molecular risk. (A, B) Kaplan–Meier survival curves of RFS for 586 

the pedAML patients receiving HSCT (A) and without receiving HSCT in the first CR (B). 587 

(C) The distribution of cytogenetic/molecular risk between low- and high-risk groups based 588 

on AML
lnc69

. (D-F) Kaplan–Meier survival curve of pedAML patients' RFS based on 589 

AML
lnc69

 in low-, standard- and high-risk groups categorized by cytogenetic/molecular risk 590 

stratification. HSCT, hematopoietic stem cell transplantation; CR, complete remission; 591 

pedAML, pediatric acute myeloid leukemia; RFS, relapse-free survival. 592 

 593 

Figure 4. Independent prognostic analysis of AML
lnc69

. (A, B) Forest plots of univariate (A) 594 

and multivariate (B) independent Cox regression analyses of AML
lnc46

 and other characters. 595 

(C) Nomogram model of the combined AML
lnc46

, NPM mutation and WBC at diagnosis for 596 

1-, 2-, and 3-year relapse risk in pedAML patients. (D) Calibration plot comparing 597 

nomogram-predicted and actual RFS at 1-, 2-, and 3-year. PedAML, pediatric acute myeloid 598 

leukemia; RFS, relapse-free survival. 599 

 600 

Figure 5. Comparision of significant characters between AML
lnc69 

low- and high-risk 601 

groups. (A) Heatmap comparing the distribution of significant characters. (B-D) 602 

Comparision of age (B), WBC at diagnosis (C) and bone marrow leukemic blast (D). WBC, 603 

white blood cell. 604 
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Tables 605 

 606 

TABLE 1 Examples of 1-, 2-, and 3-year relapse risk prediction for pedAML patients 607 

using the nomogram prediction model. 608 

 609 

 610 

Abbreviations: WBC: white blood cell. 611 

 612 

AML
lnc69

 NPM mutation WBC at 

diagnosis 

1-Year Risk, % 

(95% CI) 

2-Year Risk, % 

(95% CI) 

3-Year Risk, % 

(95% CI) 

High No ≥50 56.8 (48.3-63.8) 80.5 (72.9-86.0) 83.6 (76.4-88.7) 

High Yes ≥50 29.8 (14.2-42.6) 49.9 (26.1-66.0) 53.4 (28.5-69.7) 

High No <50 49.2 (42.1-55.5) 73.3 (66.1-79.0) 76.8 (69.8-82.2) 

High Yes <50 24.9 (11.7-36.2) 42.8 (21.7-58.2) 46.1 (23.8-61.9) 

Low No ≥50 18.1 (13.8-22.3) 32.3 (25.6-38.4) 35.1 (28.0-41.4) 

Low Yes ≥50 8.1 (3.7-12.4) 15.2 (7.2-22.5) 16.7 (7.9-24.6) 

Low No <50 14.9 (11.9-17.9) 27.1 (22.5-31.4) 29.5 (24.7-34.0) 

Low Yes <50 6.6 (3.0-10.0) 12.5 (6.0-18.5) 13.7 (6.6-20.3) 
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