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Abstract:
Therapy-related myeloid neoplasms (t-MNs) arise after exposure to cytotoxic therapies and are
associated with high-risk genetic features and poor outcomes. We analyzed a cohort of patients with
therapy-related chronic myelomonocytic leukemia (tCMML; n = 71) and compared its features to that
of de novo CMML (dnCMML; n = 461). Median time from cytotoxic therapy to tCMML diagnosis was 6.5
years. Compared with dnCMML, chromosome 7 abnormalities (4% vs. 13%; P = .005), but not complex
karyotype (3% vs. 7%; P = .15), were more frequent in tCMML. tCMML was characterized by higher TP53
mutation frequency (4% vs. 12%; P = .04) and lower NRAS (6% vs 22%, P =0.007) and CBL (4% vs 12%, P
=0.04) mutation frequency. Prior therapy with antimetabolites (OR, 1.22 [95% CI, 1.05-1.42]; P =
.01) and mitotic inhibitors (OR, 1.24 [95% CI, 1.06-1.44]; P = .009) was associated with NF1 and
SETBP1 mutations while prior mitotic inhibitor therapy was associated with lower TET2 mutation
frequency (OR, 0.71 [95% CI, 0.55-0.92]; P = .01). Although no differences in median overall
survival (OS) were observed among tCMML and dnCMML (34.7 months vs 35.9 months, P = .26),
multivariate analysis for OS revealed that prior chemotherapy was associated with increased risk of
death (HR 1.76 [95% CI, 1.07-2.89]; P = .026). Compared to a cohort of therapy-related
myelodysplastic syndrome, tCMML had lower TP53 mutation frequency (12% vs 44.4%, P <.001) and less
unfavorable outcomes. In summary, tCMML does not exhibit the high-risk features and poor outcomes
of t-MNs. -
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Key points 27 

 28 

- The incidence of high-risk features, such as TP53 mutations or complex karyotype, is lower in 29 
tCMML compared to tMDS/tAML 30 

 31 

- tCMML does not exhibit the poor outcomes of therapy-related myeloid neoplasms.  32 
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Abstract 33 

 34 

Therapy-related myeloid neoplasms (t-MNs) arise after exposure to cytotoxic therapies 35 

and are associated with high-risk genetic features and poor outcomes. We analyzed a cohort of 36 

patients with therapy-related chronic myelomonocytic leukemia (tCMML; n = 71) and compared 37 

its features to that of de novo CMML (dnCMML; n = 461). Median time from cytotoxic therapy to 38 

tCMML diagnosis was 6.5 years. Compared with dnCMML, chromosome 7 abnormalities (4% 39 

vs. 13%; P = .005), but not complex karyotype (3% vs. 7%; P = .15), were more frequent in 40 

tCMML. tCMML was characterized by higher TP53 mutation frequency (4% vs. 12%; P = .04) 41 

and lower NRAS (6% vs 22%, P =0.007) and CBL (4% vs 12%, P =0.04) mutation frequency. 42 

Prior therapy with antimetabolites (OR, 1.22 [95% CI, 1.05-1.42]; P = .01) and mitotic inhibitors 43 

(OR, 1.24 [95% CI, 1.06-1.44]; P = .009) was associated with NF1 and SETBP1 mutations while 44 

prior mitotic inhibitor therapy was associated with lower TET2 mutation frequency (OR, 0.71 45 

[95% CI, 0.55-0.92]; P = .01). Although no differences in median overall survival (OS) were 46 

observed among tCMML and dnCMML (34.7 months vs 35.9 months, P = .26), multivariate 47 

analysis for OS revealed that prior chemotherapy was associated with increased risk of death 48 

(HR 1.76 [95% CI, 1.07-2.89]; P = .026). Compared to a cohort of therapy-related 49 

myelodysplastic syndrome, tCMML had lower TP53 mutation frequency (12% vs 44.4%, P 50 

<.001) and less unfavorable outcomes. In summary, tCMML does not exhibit the high-risk 51 

features and poor outcomes of t-MNs.   52 
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Introduction 53 

 54 

Therapy-related myeloid neoplasms (t-MNs) are defined by the World Health Organization 55 

(WHO) 2016 classification as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), 56 

and myelodysplastic/myeloproliferative neoplasms that occur as late complications of cytotoxic 57 

chemotherapy and/or radiotherapy.1 More recently, the WHO 2022 classification modified the 58 

definition to myeloid neoplasms after cytotoxic therapy but essentially maintained the original 59 

criteria.2 The incidence rate for t-MNs is about 10-20% of all myeloid neoplasms and is expected 60 

to increase in parallel with the increase in the number of cancer survivors.3–5 In the past, t-MNs 61 

were proposed to be direct consequences of induction of DNA damage in hematopoietic 62 

progenitors by cytotoxic therapy. However, ensuing studies have demonstrated that t-MNs 63 

result from a combination of factors that include genetic damage to the hematopoietic precursor, 64 

inherited predisposition to genetic damage, clonal selection of previously mutated precursors, 65 

and bone marrow microenvironment disruption.3,6,7 Furthermore, t-MNs are associated with 66 

high-risk genetic features (e.g., complex karyotype, TP53 mutations) and have dismal 67 

outcomes.8–11 68 

Chronic myelomonocytic leukemia (CMML) is a hematopoietic stem cell neoplasm 69 

characterized by sustained monocytosis together with myelodysplastic and myeloproliferative 70 

features.1,2 Compared with AML and MDS, cytogenetic abnormalities are not as frequent in 71 

CMML cases (~30%)12,13. Also, CMML has a unique genetic landscape, with TET2, SRSF2, and 72 

ASXL1 being the most commonly mutated genes.14,15 Despite increasing knowledge about the 73 

biology of CMML, effective therapies are limited, and patients are at risk for transformation to 74 

AML, which is associated with poor survival.14 Although prior studies suggest that therapy-75 

related CMML (tCMML) accounts for 9-11% of all CMMLs16–18, data on this entity remains 76 

scarce owing to its rarity and lack of specific reporting. In addition, although some studies have 77 

demonstrated increased incidence of high-risk genetic features in tCMML cases, data remains 78 
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contradictory and few studies performed detailed mutational profile analysis. Therefore, there is 79 

a need to evaluate the clinical and genetic features of tCMML in large cohorts of patients. 80 

To study further the natural history and features of tCMML we evaluated the largest 81 

cohort of such patients reported to date, and compared their baseline cytogenetic and molecular 82 

characteristics with those of de novo CMML (dnCMML). We also describe the results of a 83 

comprehensive survival analysis of patients with tCMML compared to dnCMML and other t-84 

MNs. 85 

 86 

Methods 87 

Study design and patient inclusion 88 

This was a single-center retrospective analysis of all patients diagnosed with CMML 89 

from 2005 to 2022 at The University of Texas MD Anderson Cancer Center. Patients were 90 

diagnosed with CMML according to the 2016 WHO classification criteria.1 tCMML patients were 91 

defined as those with a documented history of exposure to cytotoxic therapy (chemotherapy and 92 

radiotherapy). Types of cytotoxic therapy were grouped by mechanism of action (supplemental 93 

Table 1). Responses to treatment were assessed using the 2006 modified International Working 94 

Group (IWG) response criteria for MDS19. An MD Anderson database of patients diagnosed with 95 

MDS spanning 2017-2022 was used for comparison with the tCMML patients. This study was 96 

approved by the MD Anderson Institutional Review Board and was conducted in accordance 97 

with the Declaration of Helsinki.  98 

 99 

Genetic assessment 100 

Cytogenetic analysis was performed using conventional chromosome banding and, in 101 

some cases, fluorescence in situ hybridization. Mutational analysis was performed using 28- 102 

and 81-gene next-generation sequencing (NGS) panels. The next-generation sequencing gene 103 

coverage for these panels is described in supplemental Tables 2 and 3. TP53 multihit status 104 
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was defined as the presence of two or more TP53 mutations, one TP53 mutation with a variant 105 

allele frequency greater than 50%, or one TP53 mutation with a deletion of chromosome 106 

17/17p.  107 

 108 

 109 

Statistical methods 110 

Baseline patient characteristics were analyzed using descriptive statistics. The Student t-111 

test and Mann-Whitney U test were used for comparison of continuous variables with normal 112 

and nonnormal distribution, respectively. The 2 and Fisher exact test were used to compare 113 

categorical variables. Logistic regression was used to test for associations between exposure to 114 

therapy and tCMML characteristics. Median follow-up times were calculated using the Kaplan-115 

Meier estimate of potential follow-up.20 OS was calculated from diagnosis to death. Leukemia-116 

free survival (LFS) was calculated from diagnosis to AML transformation or death. OS and LFS 117 

distributions were estimated using the Kaplan-Meier method and compared using a log-rank 118 

test. Cumulative incidence analyses were performed using death as the primary event and AML 119 

transformation as a competing event. Comparison of cumulative incidence was performed using 120 

the Gray test. Univariate and multivariate analyses were performed using Cox proportional 121 

hazards regression. Cox proportional hazard assumption was evaluated with the Schoenfeld 122 

residuals. All statistical analyses were performed using the R computing language (version 123 

4.2.2). 124 

 125 

This study was approved by the MD Anderson Institutional Review Board and was conducted in 126 

accordance with the Declaration of Helsinki. 127 

 128 

Results 129 
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Baseline characteristics 130 

We included a total of 532 patients with CMML in this study, 71 (13%) of whom had 131 

tCMML. Baseline patient characteristics are listed in Table 1. The median age was 70 years 132 

(range, 25-94 years) for the entire cohort, 70 years (range, 25-94 years) for dnCMML patients, 133 

and 73 years (range, 30-89 years) for tCMML patients (P = .054). Three hundred fifty-eight 134 

patients (67%) were male. The median white blood cell count was 12.6 x 109/L (range, 2.4-135 

214.0 x 109/L) overall, 13.3 x 109/L (range, 2.6-214.0 x 109/L) in dnCMML patients, and 10.7 x 136 

109/L (range, 2.40-132.90 x 109/L) in tCMML patients (P = .03). According to the French-137 

American-British classification,21 228 (43%) patients were classified as having dysplastic CMML 138 

(n = 193 [43%] and n = 35 [49%] for dnCMML and tCMML, respectively), and 299 (56%) were 139 

classified as having proliferative CMML (n = 263 [57%] and n = 36 [41%] for dnCMML and 140 

tCMML, respectively; P = .33). According to the WHO 2016 classification,1 206 patients (39%) 141 

were classified as having CMML-0 (n = 176 [38%] and n = 30 [42%] for dnCMML and tCMML, 142 

respectively), 205 (39%) were classified as having CMML-1 (n = 179 [39%] and n = 26 [36%] for 143 

dnCMML and tCMML, respectively), and 116 (22%) were classified as having CMML-2 (n = 101 144 

[22%] and n = 15 [21%] for dnCMML and tCMML, respectively; P = .839). According to the 145 

WHO 2022 classification,2 401 patients (76%) were classified as having CMML-1 (n = 346 [75%] 146 

and n = 55 [77%] for dnCMML and tCMML, respectively), with the same proportion of patients in 147 

the CMML-2 subgroup of the previous WHO classification.  148 

The median time from cytotoxic therapy to tCMML diagnosis was 6.5 years (range, 0.5-149 

24.0 years). At the moment of tCMML diagnosis, 11 patients (15.5%) had an active neoplasm. 150 

The most frequent neoplasms preceding tCMML diagnosis were prostate cancer (n = 18 [25%]), 151 

lymphoproliferative disease (n = 16 [23%]), breast cancer (n = 10 [14%]), head and neck cancer 152 

(n = 8 [11%]), and colorectal cancer (n = 8 [11%]). Patients received radiotherapy (n = 25 153 

[35%]), chemotherapy (n = 22 [31%]), or a combination of radiotherapy and chemotherapy (n = 154 

24 [34%]). Among those who received chemotherapy, 32 patients (45%) received alkylating 155 
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agents, 26 (37%) received mitotic inhibitors, 25 (35%) received antimetabolite drugs, 17 (24%) 156 

received cytotoxic antibiotics, and 7 (10%) received type II topoisomerase inhibitors. We found 157 

no differences in the median time from cancer therapy to tCMML diagnosis when comparing 158 

different types of therapy.  159 

 160 

Cytogenetic and molecular findings 161 

At diagnosis, 334 patients (63%) had normal karyotype (n = 293 [64%] and n = 41 [58%] in 162 

patients with dnCMML and tCMML, respectively; P = .23]). Chromosome 7 abnormalities 163 

occurred in 27 patients (5%) and were more frequent in patients with tCMML (n = 9 [13%]) than 164 

in those with dnCMML (n = 18 [4%]; P = .005). Complex karyotype, defined as 3 or more 165 

chromosomal abnormalities, was more frequent in patients with tCMML (n = 5 [7%]) than in 166 

those with dnCMML (n = 13 [3%]), although the difference was not significant (P = .15). 167 

According to the CMML Prognostic Scoring System (CPSS) cytogenetic risk classification,13 328 168 

patients (62%) were in the low-risk group (n = 284 [62%] and n = 44 [62%] in patients with 169 

dnCMML and tCMML, respectively), 89 patients (17%) were in the intermediate-risk groups (n = 170 

77 [17%] and n = 12 [17%] in patients with dnCMML and tCMML, respectively), and 79 patients 171 

(15%) were in the high-risk group (n = 67 [15%] and n = 12 [17%] in patients with dnCMML and 172 

tCMML, respectively; P = .98]).  173 

Among all patients, 374 (70%) had available NGS testing data (51 patients with tCMML 174 

[72%] and 323 with dnCMML [70%]) obtained by evaluating a panel of 28 or 81 genes in 109 175 

(29%) and 265 (71%) patients, respectively. The most commonly observed mutations included 176 

TET2 (n = 210 [56%]), ASXL1 (n = 170 [45%]), SRSF2 (n = 109 [29%]), and RUNX1 (n = 77 177 

[21%]), with no significant differences in the incidence of these mutations between dnCMML and 178 

tCMML. Frequencies and variant allele frequencies of identified mutations are shown in Figure 179 

1. Compared with patients with dnCMML, those with tCMML had a lower incidence of NRAS 180 

mutations (n = 70 [22%] vs. n = 3 [6%]; P = .007) and CBL mutations (n = 39 [12%] vs. n = 2 181 
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[4%]; P = .04) and a higher incidence of TP53 mutations (n = 14 [4%] vs. n = 6 [12%]; P = .04). 182 

TP53 multihit status was present in seven patients with dnCMML (50% of patients with dnCMML 183 

with TP53 mutations) and four patients with tCMML (67% of with tCMML with TP53 mutations; P 184 

= .84). When comparing variant allele frequency differences between patients with dnCMML 185 

and tCMML, those with tCMML had a higher median variant allele frequency for CBL (91% vs. 186 

19%; P = .01) and NRAS (48% vs. 18%; P = .04) mutations.  187 

We also did an exploratory analysis of the association between prior types of treatment 188 

received for the antecedent malignancy and biological variables at tCMML diagnosis (Figure 2). 189 

No patients with trisomy of chromosome 8 (odds ratio [OR], 0.85 [95% CI, 0.75-0.95]; P = .006) 190 

or DNMT3A mutation (OR, 0.80 [95% CI, 0.69-0.93]; P = .004) received prior chemotherapy. 191 

Patients who received alkylating agents or type II topoisomerase inhibitors were associated with 192 

tCMML classified as CMML-0 according to the WHO classification (OR, 1.30 [95% CI, 1.04-193 

1.64]; P = .03 for alkylating agents; OR, 1.60 [95% CI, 1.10-2.33]; P = .02 for type II 194 

topoisomerase inhibitors). All patients with NF1 or SETBP1 mutations had received 195 

antimetabolites and mitotic inhibitors (OR, 1.22 [95% CI, 1.05-1.42]; P = .01 for antimetabolites; 196 

OR, 1.24 [95% CI, 1.06-1.44]; P = .009 for mitotic inhibitors). Also, patients who received mitotic 197 

inhibitors were associated with a lower frequency of TET2 mutations (OR, 0.71 [95% CI, 0.55-198 

0.92]; P = .01). 199 

Among 359 patients in whom CPSS-Mol scores were evaluable, twenty-six (5%) were 200 

classified as low risk (n = 24 [5%] vs. n = 2 [3%] for patients with dnCMML and tCMML, 201 

respectively), 70 (13%) as intermediate-1 risk (n = 59 [13%] vs. n = 11 [15%] for patients with 202 

dnCMML and tCMML, respectively), 150 (28%) as intermediate-2 risk (n = 129 [28%] vs. n = 21 203 

[30%] for patients with dnCMML and tCMML, respectively), and 113 (21%) as high risk (n = 97 204 

[21%] vs. n = 16 [23%] for patients with dnCMML and tCMML, respectively) (P = .79). An 205 

additional classification using the Molecular International Prognostic Score System for MDS 206 

(IPSS-M)22 is available in the Supplemental material (Supplemental Analysis 1).   207 
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 208 

Treatment responses and survival analysis 209 

Among all patients in the cohort, 351 (66%) received treatment for CMML. 210 

Hypomethylating agents were most frequently used (n = 328 [93%]), followed by intensive 211 

chemotherapy (n = 10 [3%]) and low-dose chemotherapy (n = 5 [1%]). Among patients treated 212 

with hypomethylating agents, the overall response rate (complete remission or marrow complete 213 

remission) was 59% (195/328), with no differences in rate between patients with dnCMML 214 

(167/281 [59%]) and those with tCMML (28/47 [60%]; P = 1). Six patients (7.4%) with tCMML 215 

and 72 patients (15.6%) underwent allogeneic stem cell transplantation (P = 0.12).  216 

The median follow-up time was 58.3 months (95% CI, 49.5-62.8 months). The median 217 

OS (mOS) and median LFS (mLFS) times were 35.9 months (95% CI, 30.7-42.4 months) and 218 

28.6 months (95% CI, 25.0-34.1 months), respectively (Figure 3). The 2-year OS and LFS rates 219 

were 64.8% and 56.1%, respectively. The mOS and mLFS times were 35.9 months and 28.9 220 

months, respectively, in dnCMML patients and 34.7 months and 28.2 months, respectively, in 221 

tCMML patients (P = .26 for OS, P = .8 for LFS). We found no OS differences between patients 222 

with tCMML who had previously received only radiotherapy and those who had received 223 

chemotherapy for their antecedent malignancy (mOS time, 37.9 months vs. 30.9 months; P = 224 

.811). The mOS times were 75.0, 82.6, 44.1, and 22.9 months for patients in the low, 225 

intermediate-1, intermediate-2, and high CPSS-Mol risk groups, respectively (P < .001). The 226 

mOS time was 75.0 months (dnCMML) vs not reached (tCMML) (P = .605), 88.0 months versus 227 

37.9 months (P = .016), 44.1 months versus 36.3 months (P = .515), and 23.1 months versus 228 

21.4 months (P = .399) for patients in the low, intermediate-1, intermediate-2, and high CPSS-229 

Mol risk groups, respectively. Additional OS and LFS analysis results are detailed in 230 

supplemental Figure 2 and 3. Results of an univariate analysis for OS for all patients with CMML 231 

are detailed in Figure 4. Multivariate analysis for survival identified age greater than 70 years 232 

(hazard ratio [HR], 1.52 [95% CI, 1.09-2.12]; P = .013), previous chemotherapy for tCMML (HR, 233 
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1.76 [95% CI, 1.07-2.89]; P = .026), intermediate-2 CPSS-Mol risk group (HR, 2.94 [95% CI, 234 

1.18-7.32]; P = .021), and high CPSS-Mol risk group (HR, 5.24 [95% CI, 2.10-13.10]; P < .001) 235 

as independent risk factors for OS. Univariate analysis for patients with tCMML is detailed in the 236 

supplemental Table 4.  237 

The 2- and 5-year cumulative incidence rates for AML transformation were 23.0% and 238 

36.1%, respectively. The 2- and 5-year cumulative incidence rates for death without AML 239 

transformation were 20.8% and 33.9%, respectively. When comparing dnCMML and tCMML 240 

patients, the 2-year cumulative incidence rates for AML transformation were 23.7% and 18.7%, 241 

respectively (P = .086), and the 2-year cumulative incidence rates for death without 242 

transformation were 19.8% and 27.6%, respectively (P = .047). We also compared the 243 

cumulative incidence of AML transformation and death without transformation in each CPSS-244 

Mol risk group (supplemental Figure 4). We found a significant difference in the 2-year 245 

cumulative incidence rate for death without transformation in dnCMML (6.9%) and tCMML 246 

(39.4%) patients in the intermediate-1 group (P = .002).  247 

 248 

Therapy-related MDS versus tCMML 249 

To determine if the clinical outcomes of therapy related myeloid neoplasms are driven by 250 

underlying phenotypic and genomic features, we compared the characteristics of tCMML with 251 

those of a cohort of therapy-related MDS (tMDS). We analyzed 998 patients with MDS with a 252 

median follow up of 23.9 months: 342 (34%) with tMDS and 656 (66%) with de novo MDS. 253 

Patients with tMDS had higher incidence rates for chromosome 7 abnormalities (30.1% vs. 254 

9.1%; P < .001), complex karyotype (39.8% vs. 19.4%; P < .001), and TP53 mutations (44.4% 255 

vs. 20.1%; P < .001), compared to de novo MDS. TP53 multihit status was present in 64% and 256 

59% patients with TP53 mutations in the tMDS and de novo MDS groups, respectively (P = .49). 257 

When compared with tCMML, tMDS exhibited significantly higher incidence rates of complex 258 

karyotype (39.8% vs 7%, P < .001) and TP53 mutations (44.4% vs 12%, P < .001). Normal 259 
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karyotype was less common in tMDS than in de novo MDS patients (17.3% vs. 42.8%; P < 260 

.001). The mOS time for tMDS was 17.3 months (vs. 34.7 for tCMML; P = .02). When stratifying 261 

patients by disease and TP53 status, tCMML and tMDS patients with TP53 mutations had 262 

worse mOS times (11.6 months and 11.8 months, respectively) than did tCMML and tMDS 263 

patients without TP53 mutations (35.2 months and 30.2 months, respectively; P = .2 [tCMML] 264 

and P < .001 [tMDS]) (Figure 5 and Supplemental Figure 5 ).A simulation using the new WHO 265 

20222 and International Consensus Classification (ICC)23 diagnostic criteria is detailed in the 266 

supplemental Material (Supplemental analysis 2).  267 

 268 

Discussion 269 

In this study, we performed a comprehensive analysis of the largest published cohort of 270 

patients with tCMML to date. The incidence rate for tCMML was 13%, which is consistent with 271 

previous reports of incidence rates of 9-11%.16–18 Also, the median time from exposure to 272 

therapy to diagnosis of 6.5 years is consistent with previous tCMML reports and similar to 273 

reported times from cytotoxic drug exposure to AML and MDS diagnosis (5-7 years after 274 

alkylating agent use and/or radiotherapy).9,24 Authors have described reduced time from therapy 275 

to t-MN development (2-3 years) and increased risk of balanced translocations in patients 276 

receiving type II topoisomerase inhibitors.25 We did not find this phenomenon in the present 277 

study, although most patients received these drugs in combination with other cytotoxic agents. 278 

Moreover, balanced translocations are rare in CMML cases, suggesting that they are specific to 279 

the development of therapy-related AML. The neoplasms most frequently preceding tCMML 280 

were prostate, lymphoid, and breast tumors, which coincides with the most frequent prior tumors 281 

in patients with t-MNs.3 This is likely a result of the wide use of chemotherapeutic agents in the 282 

treatment of these neoplasms together with increased long-term survival of cancer patients, 283 

which increases the chances of late development of t-MN.  284 
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The baseline characteristics of our dnCMML and tCMML patients were similar, with no 285 

significant differences according to CMML subtype (dysplastic vs. proliferative) or blast 286 

percentage. When analyzing cytogenetic characteristics, only chromosome 7 abnormalities 287 

were markedly more common in tCMML than in dnCMML patients (3.9% vs. 12.7%); the 288 

incidence of chromosome 5 abnormalities (4.2% in tCMML) and complex karyotype (7% in 289 

tCMML) did not differ. Accordingly, we saw no differences in cytogenetic risk according to CPSS 290 

classification. In contrast, t-MN cases have a high incidence of chromosome 5, 7, and 17 291 

abnormalities as well as complex karyotype (40-50% of all t-MNs).3 Moreover, Patnaik and 292 

colleagues16 found a significantly increased incidence of complex karyotype in tCMML cases 293 

(12%), but again, this was far below the incidence in cases of other t-MNs. Complex karyotype 294 

usually occurs in the context of TP53 mutations, likely as a result of inactivation of this gene, 295 

which drives cells into a highly unstable genome.26 In our study, the overall incidence of TP53 296 

mutations was 5.5%, which is higher than the 2.4% reported in a recent publication, likely 297 

because a higher incidence of tCMML in our cohort together with a referral bias given the study 298 

was performed in an academic referral cancer center. 27 Specifically, the incidence of TP53 299 

mutations in patients with tCMML was 11.8%, which was considerably higher than that in 300 

patients with dnCMML (4.3%) but again below the reported incidence rates for patients with 301 

other t-MNs, which range from 23% to 37%.3 Consistent with this data, our cohort of patients 302 

with tMDS revealed TP53 mutation and complex karyotype incidence rates of 44.4% and 303 

39.8%, respectively. This low incidence of TP53 mutations and complex karyotype suggests 304 

that the leukemogenic mechanisms in the development of tCMML differ from those reported for 305 

other t-MNs. Another hypothesis is that in some of these tCMML cases, previous exposure to 306 

therapy may not have been directly involved in the development or progression of the disease, 307 

thus behaving as dnCMML. Although this hypothesis is supported by our observation that 308 

tCMML does not have significantly worse survival than dnCMML unless corrected for other high 309 

risk biologic features, it requires further experimental validation. The WHO definition of t-MNs is 310 
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very broad because includes all myeloid neoplasms occurring after exposure to cytotoxic 311 

therapy without requiring a proven causality. With better knowledge of the specific 312 

leukemogenic mechanisms of cytotoxic therapy, future classifications may refine the definition of 313 

t-MNs. We observed a low incidence of NRAS and CBL mutations with a high VAF in individuals 314 

with tCMML. However, it is important to interpret this finding cautiously given the limited number 315 

of patients.  316 

In our study, outcomes of tCMML were not distinct from those of dnCMML. The 317 

response rates for hypomethylating agent–based therapy in the two groups were similar, and 318 

the mOS times were 35.9 months and 34.7 months for dnCMML and tCMML, respectively. This 319 

differs from previously published outcomes in t-MN patients, including a mOS time shorter than 320 

1 year.8,28 Also, when specifically comparing tCMML and tMDS, the mOS time was substantially 321 

lower in the latter (17.3 months). As discussed above, the incidence of TP53 mutations and 322 

complex karyotype is low in tCMML patients, which is associated with treatment resistance and 323 

poor outcomes. This may be the main reason why tCMML does not have more dismal outcomes 324 

than other t-MNs. A hypothesis is that exposure to cytotoxic therapy selects resistant 325 

hematopoietic stem cell subclones, likely with TP53 mutations, that are more prone to lately 326 

develop tMDS or therapy-related AML instead of tCMML. Clonal selection of TP53 subclones 327 

induced by treatments has been described in AML and MDS29,30. This could mean that maybe 328 

the majority of tCMML are not truly therapy-related and the exposure to these therapies did not 329 

induce clonal selection leading to disease evolution. A deeper survival analysis demonstrated 330 

that OS was significantly reduced in tCMML patients in the intermediate-1 CPSS-Mol risk group, 331 

with an increased cumulative incidence of death but not of AML transformation. Indeed, tCMML 332 

patients who received previous chemotherapy had an increased risk of death in the multivariate 333 

analysis (HR, 1.76). Moreover, the cumulative incidence of AML transformation was lower in 334 

tCMML patients, possibly attributed to a higher risk of non-transformation death, which was 335 

assessed as a competing event. This increased risk of death in this non-high-risk group of 336 
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patients with tCMML may result from potential comorbidities related to a previous neoplasm or 337 

an active neoplasm co-occurring with tCMML.  338 

Exposure to specific antineoplastic agents is associated to recurrent genetic 339 

abnormalities in patients with t-MNs. Indeed, the most known associations are exposure to type 340 

II topoisomerase inhibitors with 11q23 translocations and exposure to alkylating agents with 341 

chromosome 5 and 7 abnormalities.31,32 Guerra and colleagues analyzed a large cohort of t-MN 342 

patients to look for associations between chemotherapy exposure and specific mutations and 343 

found some interesting associations between EZH2 mutation and vinca alkaloid use as well as 344 

TP53 mutation with immunomodulatory imide drug use.30 In the present study, we conducted a 345 

hypothesis-generating analysis to look for associations between therapies received and tCMML 346 

characteristics. We found some interesting preliminary associations, like a low incidence of 347 

TET2 mutations in patients exposed to mitotic inhibitors, which was described by Sperling et al. 348 

specifically in the context of vinca alkaloids. However, our analysis was exploratory using a 349 

small cohort of patients with tCMML and therefore it is premature to make assumptions based 350 

on the associations found. The associations and the potential mechanisms by different 351 

chemotherapeutic agents to induce specific genetic abnormalities need to be confirmed in the 352 

context of tCMML.  353 

A limitation of this study is that it was a retrospective analysis of patients given treatment 354 

over a wide interval of time and in a single institution. Moreover, such patients commonly 355 

receive multiple combinations of chemotherapy and radiotherapy for their neoplasms, and some 356 

of them can receive multiple lines if their disease relapses. This treatment heterogenicity makes 357 

difficult to establish associations between specific exposures and t-MN characteristics difficult.  358 

In conclusion, tCMML differs biologically from other t-MNs, with fewer high-risk features 359 

such as complex karyotype and TP53 mutations. These variations may stem from unique 360 

leukemogenic mechanisms in tCMML when compared to those of tMDS or therapy-related AML. 361 

Therefore, the outcomes of tCMML are not as dismal as those of other t-MNs. Our findings 362 
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support the eligibility of patients with tCMML to be potential candidates for clinical trials, given 363 

the clinical and biological similarity to dnCMML. Related to that, a definition based on clinical 364 

and genetic characteristics in t-MNs would be beneficial, encompassing previous exposure to 365 

cytotoxic agents together with specific genetic abnormalities implicated in their leukemogenic 366 

mechanisms, such as TP53 mutations or chromosome abnormalities.    367 
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Table 1. Baseline characteristics of the study patients 516 

CG, cytogenetic; Chr, chromosome; FAB, French-American-British; WBC, white blood cell. 517 
*Patients not classifiable due to unavailable laboratory, cytogenetic or genetic data.  518 
  519 

Characteristic 

All patients 

(n = 532) 

dnCMML patients  

(n = 461) 

tCMML patients  

(n = 71) 

P-

value 

Median age, years (range) 70 (25-94) 70 (25-94) 73 (30-89) .055 

Male sex, n (%) 358 (67) 309 (67) 49 (69) .844 

Median hemoglobin level, 

g/dL (range) 

10.8 (5.3-17.3) 10.8 (5.3-17.3) 10.9 (6.4-15.6) .530 

Median WBC count, x 10
9 

cells/L (range) 

12.6 (2.4-214.0) 13.3 (2.6-214.0) 10.7 (2.4-132.9) .030 

Median absolute neutrophil 

count, x 10
9 

cells/L (range) 

6.5 (0-108.0) 6.8 (0-108.0) 5.3 (0.5-50.6) .100 

Median absolute monocyte 

count, x10
9
 cells/L (range) 

2.4 (1-74.7) 2.4 (1-74.7) 1.9 (1-73.1) .698 

Median platelet count, x 10
9 

cells/L (range) 

101 (7-1386) 101 (7-1386) 115 (16-638) .629 

Median bone marrow blast 

percentage (range) 

6 (0-18) 6 (0-18) 5 (1-18) .879 

WHO 2016 classification, n (%) 

CMML-0 

CMML-1 

CMML-2 

Not classifiable* 

206 (39) 

205 (39) 

116 (22) 

5 (1) 

176 (38) 

179 (39) 

101 (22) 

5 (1) 

30 (42) 

26 (37) 

15 (21) 

0 

.840 

FAB CMML classification, n (%) 

Dysplastic 

Proliferative 

Not classifiable* 

228 (43) 

299 (56) 

5 (1) 

193 (42) 

263 (57) 

20 (1) 

35 (49) 

36 (50) 

0 

.330 

Cytogenetics, n (%) 

Diploid 

Chr 5/5q abnormality 

Chr 7 abnormality 

Trisomy 8 

del(13q) 

del(20q) 

Complex 

334 (63) 

12 (2) 

27 (5) 

40 (8) 

9 (2) 

19 (4) 

18 (3) 

293 (64) 

9 (2) 

18 (4) 

36 (8) 

7 (2) 

16 (3) 

13 (3) 

41 (58) 

3 (4) 

9 (13) 

4 (6) 

2 (3) 

3 (4) 

5 (7) 

.235 

.464 

.005 

.642 

.794 

.999 

.154 

CPSS CG classification, n (%) 

Favorable 

Intermediate 

Adverse 

Not classifiable* 

328 (62) 

89 (17) 

79 (15) 

36 (6) 

284 (62) 

77 (17) 

67 (15) 

33 (6) 

44 (62) 

12 (17) 

12 (17) 

3 (4) 

.917 

CPSS-Mol risk group, n (%) 

Low 

Intermediate-1 

Intermediate-2 

High 

Not classifiable* 

26 (5) 

70 (13) 

150 (28) 

113 (21) 

173 (33) 

24 (5) 

59 (13) 

129 (28) 

97 (21) 

153 (33) 

2 (3) 

11 (15) 

21 (30) 

16 (23) 

21 (29) 

.792 
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Table 2. Prior neoplasms and therapy in tCMML patients (n = 71) 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

CT, chemotherapy; RT, radiotherapy. 533 

  534 

Variable n (%) 

Median time from previous cancer 

to tCMML diagnosis, years (range) 

6.5 (0.1-24.4) 

Prior neoplasms 

Prostate 

Lymphoid 

Breast 

Head and neck 

Colorectal 

Lung 

Ovarian 

Other  

18 (25) 

16 (23) 

10 (14) 

8 (11) 

8 (11) 

5 (7) 

3 (4) 

7 (10) 

Therapy 

RT only 

CT only 

CT and RT 

25 (35) 

22 (31) 

24 (34) 

Type of chemotherapy 

Alkylating agents 

Mitotic inhibitors 

Antimetabolites 

Antitumor antibiotics 

Type II topoisomerase inhibitors 

Other 

Unknown 

32 (45) 

26 (37) 

25 (35) 

17 (24) 

7 (10) 

2 (3) 

8 (11) 
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Figure Legends 535 

Figure 1. Mutations in patients with dnCMML and tCMML. (A) Frequency of each mutation in 536 

dnCMML and tCMML. (B) Variant allele frequency (VAF) for each of the most frequently 537 

mutatied genes in dnCMML and  tCMML.  538 

 539 

Figure 2. Plot of the association between cytotoxic therapies and baseline and biological 540 

characteristics of tCMML patients. The numbers in the cells represent the absolute numbers 541 

of patients with each association. The color gradient represents the OR. Cells with an asterisk 542 

represent significant associations (unadjusted P value <0.05).  543 

 544 

Figure 3. Survival analysis of patients with tCMML. (A) OS of all CMML patients. (B) OS of 545 

patients with dnCMML and tCMML. (C) OS of all CMML by CPSS-Mol risk classification. (D) 546 

Cumulative incidence of relapse and AML transformation in patients with dnCMML and tCMML.  547 

 548 

Figure 4. Results of univariate and multivariate analysis of patients with CMML.  549 

 550 

Figure 5. Survival analysis comparing tCMML and tMDS (A) OS of patients with tCMML and 551 

tMDS. (B) OS of patients with tCMML and tMDS according to TP53 mutation status. 552 

 553 
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