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Abstract:
Etavopivat is an investigational, once-daily, oral, selective erythrocyte pyruvate kinase (PKR)
activator. A multicenter, randomized, placebo-controlled, double-blind, 3-part, phase 1 study
(https://clinicaltrials.gov/study/NCT03815695) was conducted to characterize the safety and
clinical activity of etavopivat. Thirty-six patients with sickle cell disease (SCD) were enrolled
into 4 cohorts: one single-dose; two multiple ascending doses; one open-label [OL]. In the OL
cohort, 15 patients (median age 33.0 [range, 17‒55] years received 400-mg etavopivat once daily for
12 weeks; 14 completed treatment. Consistent with the mechanism of PKR activation, increases in ATP
and decreases in 2,3 diphosphoglycerate were observed and sustained over 12 weeks' treatment. This
translated clinically to an increase in hemoglobin (mean maximal increase 1.6 [range, 0.8‒2.8]
g/dL), with >1 g/dL increase in 11 (73%) patients during treatment. Additionally, oxygen tension at
which hemoglobin is 50% saturated was reduced (P=.0007) with concomitant shift in point-of-sickling
(P=.0034) to lower oxygen tension in oxygen-gradient ektacytometry. Hemolysis markers (absolute
reticulocyte count, indirect bilirubin, lactate dehydrogenase) decreased from baseline, along with
matrix metalloproteinase-9 and erythropoietin. In the OL cohort, adverse events (AEs) were mostly
grade 1/2, consistent with underlying SCD; 5 patients had serious AEs. Vaso-occlusive pain episode
was the most common treatment-emergent AE (n=7) in the OL cohort. In this first study of etavopivat
in SCD, 400 mg once daily for 12 weeks was well-tolerated, resulting in rapid and sustained
increases in hemoglobin, improved RBC physiology, and decreased hemolysis.
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Key points:  91 

 Consistent with erythrocyte pyruvate kinase activation, ATP increased and 2,3-DPG 92 

decreased with etavopivat treatment.  93 

 Clinically, this translated to 73.3% of etavopivat-treated patients with SCD having a Hb 94 

increase >1 g/dL at any time during treatment.  95 

 96 

Key Words: Etavopivat; pyruvate kinase; 2,3-diphosphoglycerate; sickle cell disease; 97 

hemoglobin 98 

Explanation of Novelty:  99 

Etavopivat is an investigational, once daily, oral erythrocyte pyruvate kinase (PKR) activator. 100 

In this multicenter phase 1 trial of patients with sickle cell disease (SCD), ATP increased, 101 

and 2,3 DPG decreased with etavopivat treatment for up to 12 weeks. This translated to 102 

73.3% of etavopivat-treated patients with SCD achieving a hemoglobin increase >1 g/dL at 103 

any time during 12 weeks of treatment.  104 

 105 

  106 
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Abstract  107 

Etavopivat is an investigational, once-daily, oral, selective erythrocyte pyruvate kinase (PKR) 108 

activator. A multicenter, randomized, placebo-controlled, double-blind, 3-part, phase 1 study 109 

(https://clinicaltrials.gov/study/NCT03815695) was conducted to characterize the safety and 110 

clinical activity of etavopivat. Thirty-six patients with sickle cell disease (SCD) were enrolled into 111 

4 cohorts: one single-dose; two multiple ascending doses; one open-label [OL]. In the OL 112 

cohort, 15 patients (median age 33.0 [range, 17‒55] years received 400-mg etavopivat once 113 

daily for 12 weeks; 14 completed treatment. Consistent with the mechanism of PKR activation, 114 

increases in ATP and decreases in 2,3-diphosphoglycerate were observed and sustained over 115 

12 weeks’ treatment. This translated clinically to an increase in hemoglobin (mean maximal 116 

increase 1.6 [range, 0.8‒2.8] g/dL), with >1 g/dL increase in 11 (73%) patients during treatment. 117 

Additionally, oxygen tension at which hemoglobin is 50% saturated was reduced (P=.0007) with 118 

concomitant shift in point-of-sickling (P=.0034) to lower oxygen tension in oxygen-gradient 119 

ektacytometry. Hemolysis markers (absolute reticulocyte count, indirect bilirubin, lactate 120 

dehydrogenase) decreased from baseline, along with matrix metalloproteinase-9 and 121 

erythropoietin. In the OL cohort, adverse events (AEs) were mostly grade 1/2, consistent with 122 

underlying SCD; 5 patients had serious AEs. Vaso-occlusive pain episode was the most 123 

common treatment-emergent AE (n=7) in the OL cohort. In this first study of etavopivat in SCD, 124 

400 mg once daily for 12 weeks was well-tolerated, resulting in rapid and sustained increases in 125 

hemoglobin, improved RBC physiology, and decreased hemolysis.  126 

 127 

128 
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Introduction 129 

Sickle cell disease (SCD) is an inherited hemolytic anemia affecting 300,000 newborns/year 130 

globally in 2010 and expected to affect more than 400,000 newborns/year by 2050.1-4 Impaired 131 

red blood cell (RBC) physiology is the hallmark of SCD, which is caused by a single mutation in 132 

the β-globin gene, resulting in formation of hemoglobin S (HbS) rather than hemoglobin A 133 

(HbA).1-3 Clinical consequences include vaso-occlusion and hemolytic anemia, causing vaso-134 

occlusive pain episodes (VOEs), acute and progressive end-organ damage, and diminished 135 

quality of life. 1-3 In high-resource countries, survival has improved due to newborn screening, 136 

penicillin prophylaxis, and clinically validated treatment strategies. 1,5 However, even there, the 137 

average lifespan of a person with SCD remains 20‒30 years shorter than peers.1,6,7 138 

Current SCD treatments include supportive care, transfusions, disease-modifying 139 

therapies such as hydroxyurea (HU), and hematopoietic stem cell transplantation.1,3,5,8-10 140 

Potentially curative gene therapies have recently been FDA-approved but are costly.11-13 141 

Additionally, disease modifying therapies are hampered by barriers to access, toxicity profiles, 142 

and for the newer agents, uncertain long-term benefit. Of available therapies, hematopoietic 143 

stem cell transplantation is potentially curative, but poor donor availability, risk, and cost limit its 144 

use.1,5,10. There is an unmet need for therapeutic agents that can be initiated early, target 145 

underlying SCD pathophysiology, reduce hemolysis and VOEs, limit end-organ damage, and 146 

improve quality of life, while having a favorable risk–benefit ratio. 1,5,10,14 147 

Several glycolytic enzymes and the Rapoport-Luebering shunt are activated in RBCs 148 

under hypoxic conditions, leading to increased 2,3 diphosphoglycerate (2,3-DPG) 149 

production.15,16 In sickle RBCs, increased 2,3-DPG reduces the oxygen (O2) affinity of HbS, 150 

causing increased dissociation of O2 at higher partial pressure of dissolved O2 (pO2) compared 151 

with normal RBCs.1,15 The increase in deoxygenated HbS induces Hb polymerization and 152 

precipitates a cascade of pathologic events, including RBC sickling, hemolysis, endothelial 153 

dysfunction, and abnormal activation of inflammatory, coagulation, and oxidative pathways.1 154 

This causes oxidative stress, vaso-occlusion, and tissue ischemia-reperfusion injury.1,3,9 155 

Concurrently with increased intracellular 2,3-DPG in sickle RBCs, adenosine triphosphate (ATP) 156 

levels are reduced.17 ATP is necessary for normal ion channel function and RBC membrane 157 

homeostasis;15,18 therefore, RBCs with reduced ATP levels are less flexible than normal RBCs, 158 

contributing to premature hemolysis.19 159 

Erythrocyte pyruvate kinase (PKR) catalyzes the last, rate-limiting glycolysis step 160 

(phosphoenolpyruvate to pyruvate), generating ATP from adenosine diphosphate. PKR 161 

deficiency causes moderate-to-severe hemolytic anemia.20 Etavopivat is an investigational, 162 
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once-daily PK activator selective for the RBC isozyme (PKR). PKR activation increases Hb-O2 163 

affinity, decreases HbS polymerization, and improves RBC function and lifespan by decreasing 164 

intracellular 2,3-DPG and increasing intracellular ATP.21,22 Proof of pharmacodynamic (PD) 165 

activity for etavopivat was demonstrated in nonhuman primates, healthy humans, and ex vivo-166 

treated RBCs from patients with SCD.21  Etavopivat decreased whole blood 2,3-DPG levels, 167 

increased ATP levels, and increased Hb-O2 affinity (decreased P50) in RBCs from healthy 168 

subjects after a single 700-mg dose. In ex vivo studies involving RBCs from patients with SCD, 169 

etavopivat increased Hb-O2 affinity and reduced RBC sickling. Another allosteric activator of 170 

PKR has also recently demonstrated in Phase 1 and Phase 2 clinical studies that targeting this 171 

pathway may lead to clinical benefit in patients with SCD and was also relatively well tolerated 172 

and associated with improvements in Hb concentration and markers of hemolysis.23,24 173 

We report here the first study of etavopivat in patients with SCD. The aim of this phase 1 study 174 

was to assess the safety and clinical efficacy of etavopivat in single-dose, multiple ascending 175 

doses (MAD), followed by open-label (OL) treatment in patients with SCD. 176 

 177 

METHODS 178 

Clinical Trial and Human Subjects 179 

Study 4202-HVS-101 (NCT03815695) was a first-in-human, randomized, placebo-controlled, 180 

double-blind, single-dose and MAD, phase 1 trial in SCD. Results from healthy volunteers have 181 

been reported.25 182 

The protocol and amendments were reviewed and approved by appropriate institutional 183 

review boards (IRBs)/independent ethics committees. Patients provided written informed 184 

consent before undergoing study-related procedures. The study was conducted in accordance 185 

with the principles of the Declaration of Helsinki, Good Clinical Practice, and relevant 186 

laws/regulations. Data were analyzed by the study statistician (EW) and multiple authors. The 187 

authors had access to the data. 188 

 Key inclusion criteria were age 12‒65 years (inclusive) at screening, minimum weight 40 189 

kg, and confirmed SCD (HbSS, HbSβ0-thalassemia, HbSβ+-thalassemia, or HbSC). Patients 190 

with reproductive potential agreed to use a medically accepted contraceptive during the study 191 

and for 90 days after the last dose of study medication. 192 

Key exclusion criteria were >6 episodes of VOEs within the past year requiring a 193 

hospital, emergency department, or clinic visit; hospitalization for VOE or other SCD-related 194 

event within 14 days of consent or 28 days before study treatment; ≥1 episode of acute chest 195 
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syndrome requiring hospitalization, intubation, and mechanical ventilatory support within 6 196 

months before screening; pulmonary hypertension; use of HU if started <90 days before study 197 

treatment, crizanlizumab if started within 14 days of study treatment, or voxelotor within 7 days 198 

of study treatment until the end of the study period. SCD patients with >6 VOE were excluded to 199 

minimize the risk of including those with chronic pain disorders.  Patients were allowed 200 

crizanlizumab as scheduled infusions every ≥4 weeks. Stable doses of HU and L-glutamine 201 

were permitted.  202 

Additional exclusion criteria included use of moderate or strong inducers/inhibitors of 203 

cytochrome P450 3A4/5 within 2 weeks of study treatment; RBC transfusion within 30 days of 204 

study treatment; history of deep vein thrombosis (DVT) requiring systemic anticoagulation 205 

therapy for ≥6 weeks occurring within 6 months of study treatment; and Hb <7.0 g/dL or >10.5 206 

g/dL during screening.  207 

Study Design and Treatment 208 

Single dose segment 209 

The randomized, placebo-controlled, single-dose portion of the study (Figure 1) was conducted 210 

to confirm the safety and pharmacokinetic/pharmacodynamic (PK/PD) response to 700-mg 211 

etavopivat (previously shown to be safe and tolerable in healthy volunteers25). End of treatment 212 

(EOT) was on day 2, 24 hours after dosing (supplemental Appendix 1). 213 

Seven patients received 1 oral dose of etavopivat 700 mg (N = 5) or placebo (N = 2). 214 

MAD segment 215 

The MAD study had 2 cohorts (MAD1 and MAD2) (Figure 1) with a randomized, placebo-216 

controlled, double-blind design. Patients were randomized (3:1) to receive daily etavopivat 300 217 

mg (MAD1) or 600 mg (MAD2) or placebo for 14 days. EOT was on day 14/15, 24 hours after 218 

completion of dosing (supplemental Appendix 1). Etavopivat/placebo dosing could extend by 48 219 

hours to enable a 2-day stepwise dose reduction in patients demonstrating Hb increase >2.0 220 

g/dL over baseline. 221 

MAD segment included 20 patients who received etavopivat 300 mg (MAD1, N = 8), 222 

etavopivat 600 mg (MAD2, N = 8), or placebo (N = 4). 223 

OL segment 224 

During OL segment, 15 patients received ≤84 consecutive 400-mg daily oral doses of etavopivat 225 

(Figure 1). EOT was on day 84/85, 24 hours after the last dose (supplemental Appendix 1). 226 

Patients returned to the clinic on day 84 for the last etavopivat dose and on days 85, 88, 91, 98, 227 
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and 112 (EOS) for follow-up visits to monitor disease parameters post study drug 228 

discontinuation. 229 

Protocol amendment 7.0 allowed etavopivat dosing to extend from 2 days to up to 2 230 

weeks beyond day 84, allowing a stepwise dose decrease in patients with >2.0 g/dL Hb 231 

increase over baseline, or if clinically indicated. 232 

Safety and tolerability 233 

Adverse events (AE) were monitored from time of written consent to the last protocol-defined 234 

end-of-study (EOS) visit. Safety/tolerability monitoring has been described.25 A treatment-235 

emergent AE (TEAE) was any AE new in onset or aggravated in severity/frequency following 236 

the first dose of study medication, up to and including the EOS visit. AE severity was assessed 237 

by the investigator using Common Terminology Criteria for Adverse Events v5.0.2623 The 238 

potential relationship of each AE to study drug (treatment) was categorized by the investigator 239 

as “yes” (possibly, probably or definitely related) or “no” (unrelated or unlikely to be related).  240 

PK/PD 241 

Venous blood was collected at prespecified timepoints for PK/PD, RBC functional assessments, 242 

and biomarkers. PK parameters for etavopivat were derived using Phoenix WinNonlin (version 243 

6.4 or higher) software for noncompartmental analysis of plasma concentration data at actual 244 

sampling times. Plasma concentrations of etavopivat were determined using liquid 245 

chromatography-tandem mass spectrometry.21,25 246 

PD assessments included RBC 2,3-DPG, ATP, pO2 at which 50% of Hb is O2-saturated 247 

(P50), and exploratory laboratory assessments (RBC functional studies, and biomarkers of 248 

inflammation and coagulation). ATP and 2,3-DPG concentrations in whole blood were 249 

measured using liquid chromatography-tandem mass spectrometry.21,25 The impact of 2,3-DPG 250 

reduction on Hb-O2 affinity was assessed before/after dosing using P50 values.21,25 251 

Clinical activity 252 

Indirect bilirubin (iBIL), lactate dehydrogenase (LDH), reticulocyte counts, and Hb were 253 

measured at local laboratories. Hb response was defined as >1g/dL change from baseline at 254 

any time during treatment. 255 

RBC function 256 

Complete blood counts and hematologic parameters were analyzed by local laboratories. 257 

Additional hematology parameters, such as cellular Hb concentration mean (CHCM) and dense 258 
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RBCs (DRBCs), were centrally analyzed using an ADVIA® 2120i system (Siemens Healthineers, 259 

Hoffman Estates, IL). 260 

Hb-O2 equilibrium curves were collected using a HEMOX Analyzer (TCS Scientific Corp, 261 

New Hope, PA).21,25 RBC deformability was measured using O2 gradient ektacytometry 262 

(Oxygenscan) with the Laser Optical Rotational Red Cell Analyzer (Lorrca®; RR Mechatronics, 263 

Zwaag, The Netherlands).21 RBC deformability was defined by the elongation index (El) derived 264 

from the laser diffraction pattern in a suspension of RBCs subjected to a cycle of deoxygenation 265 

and reoxygenation. pO2 in the RBC suspension was calculated every 20 seconds based on 266 

signal quenching using a luminophore O2 sensor. Point of sickling (PoS) was calculated as the 267 

pO2 (mmHg) at which the EI dropped below 5% of maximum EI during deoxygenation, thus 268 

indicating the O2 pressure at which the polymerization of HbS begins to impact RBC 269 

deformability.21  270 

Biomarkers 271 

Biomarkers of inflammation (plasma tumor necrosis factor-α, matrix metalloproteinase-9, white 272 

blood cell count), hypercoagulability (prothrombin fragment 1.2 [F1.2]; D-dimer), and tissue 273 

hypoxia (erythropoietin) were assessed using commercially available kits.  274 

Statistical analyses 275 

Sample size was based on clinical considerations and was not powered for hypothesis testing. 276 

Data were analyzed by cohort. 277 

The safety population comprised all patients who received ≥1 dose of study treatment. 278 

The PK population included all patients in the safety population with ≥1 evaluable PK profile and 279 

no important protocol deviations or other reasons for exclusion from analysis. The PD 280 

population included all patients in the safety population with ≥1 post-dose PD assessment. 281 

Statistical analyses were performed using SAS software version 9.4. Wilcoxon tests or 282 

unadjusted mixed models for repeated measures statistical tests were used as appropriate. A P 283 

value < .05 was statistically significant. 284 

Figures were plotted using GraphPad Prism version 9. 285 

 286 

The protocol and amendments were reviewed and approved by appropriate institutional review 287 

boards (IRBs)/independent ethics committees: - Duke University Health System Institutional 288 

Review Board - University of California, San Francisco Human Research Protection Program - 289 

Advarra Institutional Review Board - University of Illinois at Chicago Office for the Protection of 290 
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Research Subjects - Children's Healthcare of Atlanta Institutional Review Board - Institutional 291 

Review Board Office, Augusta University 292 

 293 

Results 294 

Study Population  295 

Thirty-six patients were enrolled and treated (supplemental Figure 1). Randomization began in 296 

November 2019 with the last patient completing in December 2021. All patients in the single-297 

dose (N = 7) and MAD cohorts (N = 20) completed the study. Fourteen of 15 patients in the OL 298 

cohort (including 6 patients from the MAD cohorts who elected to roll over) completed the study; 299 

1 withdrew due to an AE. All 15 patients in the OL cohort were included in the analyses.  300 

Table 1 shows baseline patient demographics and clinical characteristics.  301 

Exposure 302 

Patients in the single-dose cohort received 1 dose of etavopivat at 700 mg. Patients in the 303 

MAD1 and MAD2 cohorts received etavopivat 300 mg and 600 mg once daily, respectively 304 

(median 14 days [range 14‒16 days for 300 mg and 14‒14 days for 600 mg]). All patients in the 305 

2 MAD cohorts had ≥ 80% compliance. One patient each in the MAD placebo and 600-mg 306 

etavopivat-treated groups had a dose interruption (unspecified nonadherence and “other” 307 

[nausea], respectively). 308 

Patients in the OL cohort had a median exposure of 85 (range 14‒97) days. Fourteen 309 

patients had ≥80% compliance; 1 had <80% compliance. Median exposure was 33,000 (range 310 

5,600‒34,400) mg. Two patients experienced dose interruption due to an AE (nausea) and 311 

“other” (self-decreased dose due to headache). Another patient had drug withdrawn due to an 312 

AE (DVT). 313 

Safety and Tolerability 314 

In the single-dose cohort, 2 (100%) placebo-treated patients and 2 (40%) etavopivat-treated 315 

patients had 3 TEAEs each, with 1 etavopivat-treated patient experiencing treatment-related 316 

palpitations. All TEAEs were grade 1 (Supplemental Tables 1-3). 317 

In the MAD cohorts, 1 (25%) placebo-treated patient experienced 7 TEAEs, 7 (87.5%) 318 

patients in MAD1 had 14 TEAEs, and 6 (75%) patients in MAD2 had 16 TEAEs. Three patients 319 

experienced 1 treatment-related TEAE (MAD1, headache and nausea; MAD2, increased total 320 

bilirubin). Among etavopivat-treated patients in the MAD cohorts, 10 had grade 1, 9 had grade 321 

2, and 1 had grade 3 TEAEs. One patient in MAD2 experienced a serious unrelated TEAE 322 
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(VOE). The most frequently reported all-causality TEAEs were VOEs (N = 6 patients), headache 323 

(N = 4), and nausea (N = 2) (supplemental Tables 1-3).  324 

 During the 12-week etavopivat 400mg daily OL treatment, 15 (100%) patients 325 

experienced 63 TEAEs. The most frequently reported all-causality TEAEs were VOEs (N = 7 326 

patients), headache (N = 4), nausea (N = 3), upper respiratory tract infection (N = 3), and 327 

dizziness, migraine, increased gamma-glutamyl transferase, musculoskeletal chest pain, and 328 

noncardiac chest pain (N = 2 each) (Supplemental Tables 1-3). TEAEs assessed as possibly or 329 

probably treatment-related by the investigator were reported in eight patients; the most common 330 

were VOEs (N = 3 patients) occurring on Day 89 (last dose Day 85 [400 mg], Day 89 (stepwise 331 

reduction, last dose Day 87 [100 mg), and Day 96 (stepwise reduction, last Day 87 [100 mg]).  332 

In the OL cohort, 13, 8, and 6 patients had grade 1, 2, and ≥3 TEAEs, respectively. Five 333 

patients had serious TEAEs―VOE and COVID-19 infection, acute chest syndrome and VOE, 334 

DVT, noncardiac chest pain, and syncope (Table 2). On day 15, 1 patient discontinued 335 

treatment due to grade 3 DVT (possibly related), which resolved with mild residual swelling on 336 

day 80. No deaths were recorded. 337 

Following etavopivat treatment, there were no clinically meaningful adverse shifts in vital 338 

signs or, physical examination findings, chemistry, liver function, or hematology laboratory 339 

parameters, and no clinically meaningful laboratory abnormalities reported as serious AEs or 340 

resulting in study discontinuation. Supplemental Appendix 2 has additional details.  341 

The frequency of pain-related TEAEs decreased over time (supplemental Table 4). 342 

No patient received a transfusion during the study. 343 

PK 344 

Etavopivat was rapidly absorbed with time to maximum observed plasma concentration ranging 345 

1–4 hours post-dose (Table 2; Figure 2). Across cohorts, total exposure (area under the plasma 346 

concentration-time curve from 0 to 24 hours) and maximum observed plasma concentration 347 

increased with increasing etavopivat dose. The estimated elimination half-life of etavopivat was 348 

16.9 hours in the 700-mg single-dose cohort and 4–4.9 hours in the 300-, 600-, and 400-mg 349 

cohorts (Table 2). Apparent etavopivat clearance was similar across cohorts.  350 

PD 351 

Following etavopivat administration, mean whole blood 2,3-DPG levels (µg/mL per g/mL of Hb) 352 

declined rapidly from day 1 to day 2 and remained stable throughout the 14-day MAD and 353 
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84-day OL periods (Figure 3A-B). At EOT, mean 2,3-DPG levels were significantly lower than 354 

baseline in the MAD1 and OL cohorts (Figure 3A-B; Table 3). 355 

Consistent with the mechanism of PKR activation, ATP levels in whole blood rose 356 

concomitantly with 2,3-DPG reductions and remained stable throughout treatment. At EOT, 357 

mean normalized ATP levels were significantly higher than baseline in the MAD and OL cohorts 358 

(Figure 3C-D; Table 3).  359 

Following etavopivat discontinuation, 2,3-DPG levels rose to baseline or above over the 360 

next 1–4 weeks (Figure 3A-B) while ATP levels decreased toward baseline (Figure 3C-D). 361 

Decreased 2,3-DPG was associated with lower P50 (Figure 3E).  362 

In the OL cohort, reductions from baseline in P50 occurred by day 14 and persisted 363 

through day 84; mean changes from baseline were 3.5, 2.9, 4.5, and 3.3 mmHg on days 14 364 

(earliest timepoint), 28, 56, and 84, respectively (Table 3). At EOT, the decrease from baseline 365 

in P50 was statistically significant in the OL and MAD cohorts (Figure 3F; Table 3; supplemental 366 

Figure 3). 367 

Clinical Activity  368 

Hb  369 

An increase in mean Hb concentration occurred on day 2 of treatment in the MAD and OL 370 

cohorts (Figure 4A-B). From baseline to EOT, there were statistically significant increases in 371 

mean Hb levels of 1.2 (range, −0.1 to 2.3) g/dL, 1.1 (range, −0.1 to 3.5) g/dL, and 1.1 (range, 372 

−0.2 to 2.7) g/dL in the MAD1, MAD2, and OL cohorts, respectively (Figure 4A-B; Table 3).  373 

Overall, 87.5%, 50.0%, and 73.3% of patients in the MAD1, MAD2, and OL cohorts, 374 

respectively, were Hb responders (>1 g/dL at any time during treatment). In the OL cohort, the 375 

mean maximal Hb increase for each patient was 1.6 (range, 0.8‒2.8) g/dL (Table 4) regardless 376 

of responder status during treatment; among Hb responders, the mean maximal Hb increase 377 

during treatment was 1.9 (range, 1.2‒2.8) g/dL.  378 

By-patient analyses showed that Hb levels increased in most patients during treatment 379 

(Figure 4C-F).  380 

 381 
Hemolysis markers 382 

In the MAD and OL cohorts, hemolysis markers (reticulocytes, iBIL, LDH) decreased over the 383 

first 1–2 weeks of treatment and remained stable in the OL cohort for the treatment duration  384 

(Figure 5). At EOT, mean decreases from baseline in hemolysis markers were statistically 385 

significant in the MAD and OL cohorts, except iBIL in MAD1 and LDH in MAD2 (Figure 5; Table 386 

3). Individual patient data at baseline and EOT are shown in supplemental Figure 2.  387 
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Impact on RBC Function  388 

P50 reduction was associated with a shift in mean PoS to lower pO2 values (Table 3). At EOT, 389 

decreases in PoS from baseline were statistically significant in the MAD and OL cohorts 390 

(Figure 6; Table 3; supplemental Figure 3). Although the mean change from baseline to EOT 391 

was not statistically significant for RBC deformability (Elmin and Elmax), hydration (dense RBCs 392 

[DRBCs], and CHCM (MAD2) (Table 3), by-patient plots suggest these parameters may have 393 

been favorably impacted (decreased DRBCs and increased Elmin and Elmax) in many of the 394 

etavopivat-treated patients (Figure 6; supplemental Figure 3). 395 

Systemic Markers of SCD Pathophysiology  396 

At EOT in the OL cohort, there were statistically significant reductions from baseline in matrix 397 

metalloproteinase-9 and erythropoietin mean levels (Figure 7; Table 3). Mean changes from 398 

baseline in tumor necrosis factor-α, leukocytes, prothrombin 1.2, and d-dimer were not 399 

statistically significant (Figure 7; Table 3). By-patient plots for the MAD cohorts are shown in 400 

supplemental Figure 4.  401 

 402 

DISCUSSION  403 

Etavopivat is a novel, selective erythrocyte PKR activator with multimodal PD effects — it 404 

decreases 2,3-DPG and increases ATP in whole blood. In this phase 1 study, etavopivat, 300 or 405 

600 mg daily for 2 weeks and 400 mg daily for up to 12 weeks, was well tolerated in SCD 406 

patients. Decreased intracellular 2,3-DPG and increased intracellular ATP at all doses support 407 

the proof-of-mechanism of etavopivat, which resulted in rapid and sustained improvement in Hb 408 

levels and reduction of hemolysis as demonstrated by improvements in hemolytic biomarkers. 409 

Notably, 11 of 15 (73%) patients in the etavopivat 400mg daily OL cohort achieved >1.0 g/dL Hb 410 

increase from baseline during treatment; improved Hb levels were generally accompanied by 411 

decreases in hemolytic markers (reticulocytes, iBIL, LDH).  412 

Hb-O2 affinity was significantly increased by etavopivat, with significant reduction in P50 by 413 

hemoximetry. Decreased PoS on O2 gradient ektacytometry (Oxygenscan), a functional 414 

biomarker of sickle RBC pathophysiology,27-29 is associated with lower risk of acute 415 

complications in SCD (e.g., cerebral infarction, acute chest syndrome, VOEs).29-31 Etavopivat 416 

improved PoS to lower O2 pressures from study baseline to EOT in the MAD and OL cohorts.  417 

The study was not powered to determine if there were fewer VOEs over time.  .  418 

In this study, 87.5%, 50%, and 73.3% of etavopivat-treated patients in the MAD1, MAD2, 419 

and OL cohorts, respectively, were Hb responders (>1 g/dL at any time during treatment). 420 
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These response rates are consistent with the data reported for another allosteric activator of 421 

both wild type and mutant forms of PKR.33 Although, left shifting of the oxygen-dissociation 422 

curve may reduce tissue oxygen delivery and raise  erythropoietin levels, leading to increase in 423 

Hb concentration with PKR activators, most patients in our study were found to have a decline 424 

in serum erythropoietin levels (Figure 7F).  Reasons for lack of Hb response in some patients 425 

are not yet completely understood. In exploratory analyses of Hb responders versus 426 

nonresponders in our study, we did not observe differences in the change in ATP (+102 g/mL 427 

versus +72.6 g/mL, respectively; P = 0.7) or in 2,3-DPG (-113 g/mL versus -159 g/mL, 428 

respectively; P = 0.9).  Nonresponders in the MAD and OL cohorts had lower baseline 429 

reticulocytes and higher baseline erythropoietin (supplemental Table 5). Overall, there was a 430 

reduction from baseline in erythropoietin and reticulocyte levels in the OL cohort, but the change 431 

from baseline was not significant among Hb nonresponders. Patients with higher baseline 432 

hemolysis as indicated by the higher baseline reticulocyte count may be more likely to respond 433 

to etavopivat because treatment will decrease hemolysis. Further work is needed to determine 434 

whether baseline reticulocyte number is a predictor of etavopivat response.  Response to 435 

etavopivat may also vary by SCD genotype.  We included patients with non-Hb SS SCD 436 

because they experience varying degrees of hemolytic anemia and SCD-related complications, 437 

and effective therapies are needed in this group of patients.  However, with only few non-Hb SS 438 

SCD patients enrolled, we are unable to assess the genotype-related effect of etavopivat, and 439 

this will be evaluated in the ongoing Phase 2/3 study.    440 

Etavopivat was well-tolerated with a safety profile consistent with the data reported with 441 

another PKR activator used in SCD. VOEs were the most common TEAE, occurring in 3 442 

(37.5%), 3 (37.5%) and 7 (46.7%) patients in the MAD1, MAD2, and OL groups, respectively. 443 

Three patients in the OL cohort were assessed to have treatment-related VOEs. One patient 444 

(12.5%) in the MAD2 group and 2 patients (13.3%) during the 12-week OL period had serious 445 

VOEs, all assessed by the investigator as unrelated to treatment. These numbers are 446 

comparable to the phase 1 data reported with another PKR activator  in SCD, where 4 of 17 447 

(23.5%) patients had serious VOEs.23 Of the 15 patients receiving etavopivat in the OL cohort, 1 448 

had drug withdrawn due to a serious, possibly treatment-related, grade 3 DVT. Despite the 449 

increased risk of thrombosis in adults with SCD,34 an association with etavopivat treatment 450 

could not be excluded by the investigator due to the temporal relationship with study drug 451 

initiation. The number of patients with TEAEs related to SCD pain decreased during the 12-452 

week OL treatment and returned to week 1–4 levels after etavopivat was discontinued. Given 453 
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the small number of patients, an AE withdrawal event cannot be confirmed or refuted; phase 3 454 

data are needed to further inform any causal relationship. 455 

In conclusion, daily etavopivat, up to 600 mg for 2 weeks and 400 mg for up to 12 456 

weeks, was well-tolerated in patients with SCD. Consistent with the mechanism of PKR 457 

activation, increases in whole blood ATP and decreases in 2,3-DPG levels were sustained over 458 

12 weeks. Improvements in Hb oxygenation, RBC physiology, and biomarkers of SCD 459 

pathophysiology, translated clinically to 73% of patients in the OL cohort achieving a Hb 460 

response (increase from baseline >1 g/dL) during etavopivat treatment. This new, once-a-day 461 

PKR activator demonstrated persistent improvement in Hb markers and RBC physiology over a 462 

sustained time period (12 weeks) in patients with SCD, in this multicenter placebo-controlled 463 

blinded study for 2 weeks as well as in a multicenter OL study for 12 weeks. We recognize the 464 

limitation of a small sample size and relatively short treatment period; in addition, in the OL 465 

cohort, patients with Hb <7 or >10.5 g/dL were excluded during screening, and males and 466 

adolescent patients were under-represented in this study. The safety and efficacy of etavopivat 467 

in individuals with SCD aged 12–65 years is being further evaluated in HIBISCUS, a 468 

registrational, randomized, placebo-controlled, double-blind, multicenter, phase 2/3 trial 469 

(NCT04624659).32 These longer term data (52 weeks double-blind treatment followed by a 52-470 

week OL extension) will further inform the benefit–risk profile of etavopivat and the potential of 471 

this PKR activator to modify the course of SCD. 472 

 473 

  474 
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TABLES    

Table 1. Baseline demographic and clinical characteristics  

 Single dose MAD OL 

 

 

 

Characteristic, median 

(range) except where 

indicated 

Placebo Etavopivat 

single dose 

Pooled 

Placebo 

 

Etavopivat once daily for 2 weeks Etavopivat once 

daily for 12 

weeks 

(N = 2) 700 mg (N = 5) (N = 4) MAD1, 300 mg 

(N = 8) 

MAD2, 600 mg 

(N = 8) 

400 mg 

(N = 15) 

Age, years 45 (42–48) 32 (15–42) 26.5 (17–36) 24.0 (19–43) 29.5 (22–64) 33.0 (17–55)  

Male sex, n (%) 1 (50.0) 1 (20.0) 3 (75.0) 2 (25.0) 1 (12.5) 5 (33.3) 

Genotype, n (%)       

HbSS 2 (100) 5 (100) 4 (100)  7 (87.5) 6 (75.0) 13 (86.7) 

HbSC 0 0 0 0 1 (12.5) 2 (13.3) 

HbSβ+-thalassemia 0 0 0 1 (12.5) 1 (12.5) 0 

Current hydroxyurea 

therapy, n (%) 

2 (100) 5 (100) 3 (75.0) 6 (75.0) 7 (87.5) 13 (86.7) 

Hb, g/dL 7.2 (6.7–7.7) 9.7 (7.7–10.4) 7.6 (7.1–8.0) 9.1 (6.9–10.1) 8.9 (7.3–10.2) 8.7 (7.2–10.1) 

% HbS 79.7 (70.2–89.1) 78.8 (70–86.5) 84.6 (76.6–

92.7) 

83.3 (67.0–

92.9)  

80.1 (78.2–87.8) 80.3 (46.2–92.7)  

% HbF 17.4 (7.3–27.5) 11.4 (5.5–20.5) 10.0 (4.4–

16.6) 

9.8 (3.5–20.1)  15.3 (5.2–19.2) 11.5 (1.2–23)  

Advia MCV, fL* 113.3  

(101.6–125.0) 

108.7  

(96.5–122.8) 

107.4  

(100.1–131.5) 

112.9  

(75.0–117.6) 

114.7  

(68.5–129.6) 

108.1  

(77.1–122.7) 
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ARC, 109/L† 178.1  

(72.9–283.4) 

205.5  

(136.0–366.4) 

238.4  

(227.0–360.6) 

274.1  

(125.6–329.6) 

226.8  

(29.4–366.0) 

219.3  

(80.5–511.0) 

Indirect bilirubin, mg/dL‡ 3.8 (2.1‒5.4) 2.3 (1.6‒5.1) 2.8 (2.0–5.0) 1.7 (0.5–10.5) 1.3 (0.7–4.5) 1.3 (0.8–5.2) 

LDH, U/L 374.5 (348‒401) 405.0 (308–

543) 

352.0 (180–

683) 

381.5 (207–699) 368.5 (251–683) 367.0 (186–683) 

% F cells§ 
62.6 (33.3–91.8) 50.6 (34.4–

75.5) 

26.2 (22.3‒

30.1) 

36.1 (16.4‒67.2) 54.4 (13.3‒64.8) 54.4 (6.1‒76.9) 

ARC, absolute reticulocyte count; Hb, hemoglobin; HbF, fetal hemoglobin; HbS, sickle hemoglobin; LDH, lactate dehydrogenase; 

MAD, multiple ascending dose; MCV, mean corpuscular volume; OL, openlabel. 

*N = 3 for MAD pooled placebo; N = 7 for MAD1 (300 mg); N = 14 for the 12-week cohort.  

†N = 3 for MAD pooled placebo. 

‡N = 4 for single dose 700 mg; N = 3 for MAD pooled placebo. 

§N = 2 for MAD pooled placebo; N = 7 for MAD1 (300 mg); N = 14 for the 12-week cohort.  
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Table 2. Pharmacokinetic parameters (pharmacokinetic population)  

Exposure in 

patients who 

received etavopivat 

Tmax, h Cmax, ng/mL AUC0-24, 

ng∙h/mL 

t½, h* CL/F, L/h 

Single dose      

700 mg (N = 5)  2.0 (1.0‒4.0) 2894 (1450); 

50.1 

7552 (3294); 

43.6 

16.9 (7.1); 

41.8† 

102.0 (50.8); 

49.8† 

Once-daily multiple doses 

300 mg for 2 

weeks 

     

Day 1 (N = 8) 1.0 (0.9‒2.1) 884 (339); 

38.3 

2508 (995); 

39.7‡ 

4.9 (0.9); 

18.4‡ 

136.6 (61.5); 

45.0‡ 

Day 14 (N = 7) – 760 (412); 

54.2 

2747 (1047); 

38.1 

– 123.5 (46.9); 

38.0§ 

600 mg for 2 

weeks 

     

Day 1 (N = 8) 1.8 (1.0‒4.1) 1724 (1246); 

72.3 

6177(2944); 

47.7 

4.0 (0.6); 

14.4|| 

107.2 (45.0); 

42.0|| 

Day 14 (N = 8) 

 

– 3465 (2136); 

61.7 

7728 (4218); 

54.6 

– 98.8 (50.5); 

51.1§ 

400 mg for 12 

weeks  

     

Day 1 (N = 15) 1.8 (1.0‒3.9) 1139 (510); 

44.8 

3474 (1283); 

36.9¶ 

4.7 (1.2); 

25.6# 

121.8 (31.6); 

26.0# 

Day 84 (N = 13) – 1288 (684); 

53.1 

3105 (901); 

29.0** 

– 138.2 (37.7); 

27.3§,** 

Note: A dash indicates not done. 

* Data are presented as arithmetic mean (standard deviation) and %CV for Cmax, AUC0-24, t½, 

and CL/F. Data are presented as median (range) for Tmax. 

AUC0-24, area under the concentration–time curve from time 0 to 24; CL/F, apparent clearance; 

Cmax, maximum concentration; t½, terminal elimination half-life; Tmax, time to maximum 

concentration; %CV, percent coefficient of variation. 
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*The difference between the 700-mg dose and the 300-mg, 400-mg, and 600-mg doses in 

estimated t½ is likely due the reduced sampling schedule during the elimination phase of the 

pharmacokinetic profile in the MAD and OL cohorts. 

†N = 4. 

‡N = 7. 

§Steady state. 

||N = 6. 

¶N = 11. 

#N = 10. 

**N = 9. 
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Table 3. Change from baseline and percentage change from baseline at end of treatment*, † , ‡, §, ||       

 OL 400 mg, 12-week cohort  
(N = 15) 

MAD pooled placebo  
(N = 4) 

MAD1, 300 mg  
(N = 8) 

MAD2, 600 mg  
(N = 8) 

 Mean (SD) Median  
(min, max) 

Mean (SD) Median  
(min, max) 

Mean (SD) Median 
(min, max)  

Mean (SD) Median  
(min, max) 

2,3 DPG, µg/mL per g/mL Hb 

Baseline 5956.5 
(2050.8) 

6181.8  
(541, 8350) 

4349.7 
(2904.8) 

4689.5 
(541, 7479) 

6109.7 (621.8) 
N = 7 

6053.8  
(5368, 7071) 

N = 7 

6821.8 
(1764.2) 

6103.9  
(5067, 10693) 

EOT 4099.2 
(833.8) 
N = 14 

4090.2  
(2732.1, 
5555.6) 
N = 14 

5890.9 (800.4) 5642.6 
(5253, 7025) 

4263.6 (507.3) 
N = 7 

4193.5 
(3595, 4915) 

N = 7  

4643.8 
(2374.7) 

3968.8 
(2852, 10338) 

CFB EOT −1732.9* 
(2213.6) 
N = 14 

−1988.4* 
(−4511.8,3595.

3) 
N = 14 

1541.2 
(2430.4) 

873.1  
(−454, 4872) 

−1846.1* 
(494.2) 
N = 7 

−1860.2*  
(−2665,-1156) 

N = 7 

−2177.9 
(2919.3) 

−2115.2 
(−7457, 3310) 

ATP, µg/mL per g/mL Hb 

Baseline 2037.7 
(947.3)  
N = 13 

2250.0 
 (321, 3111)  

N = 13 

1284.5 
(1128.5) 

1152.2  
(313, 2521) 

2355.5 (418.5) 
N = 7 

2149.4  
(1989, 3170) 

N = 7 

2117.9 (601.6) 2217.5  
(989, 3033) 

EOT 3802.0 
(1276.1) 
N = 11 

4117.0  
(1484.9, 
5276.8) 
N = 11 

1854.7 
(1096.4) 

2209.5  
(333, 2667) 

3202.9 (516.2) 
N = 7 

3265.0  
(2577, 4150) 

N = 7 

3218.1 (739.2) 3391.6 
(2024, 4255) 

CFB EOT 1939.4* 
(1483.7)  
N = 11 

2067.5* 
(−802.4,4112.1)  

N = 11 

570.2 (1196.2) 57.7  
(−189, 2354) 

847.3* (656.4) 
N = 7 

680.1*  
(127, 2101) 

N = 7 

1100.2* (528.0) 1282.3* 
(251, 1596) 

Hemoglobin, g/dL 

Baseline 8.7 (1.0) 8.7  
(7.2, 10.1) 

7.6 (0.4) 7.6  
(7.1, 8.0) 

9.0 (1.1) 9.1  
(6.9, 10.1) 

8.7 (0.9) 8.9  
(7.3, 10.2) 

EOT 9.8 (1.1) 9.5 (8.4, 12.0)  7.7 (.2) 7.7 (7.5, 7.9) 10.1 (1.6) 10.8 (6.8, 11.7) 9.8 (1.5) 9.8 (7.4, 12.3) 
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 OL 400 mg, 12-week cohort  
(N = 15) 

MAD pooled placebo  
(N = 4) 

MAD1, 300 mg  
(N = 8) 

MAD2, 600 mg  
(N = 8) 

 Mean (SD) Median  
(min, max) 

Mean (SD) Median  
(min, max) 

Mean (SD) Median 
(min, max)  

Mean (SD) Median  
(min, max) 

CFB EOT 1.1* (0.8) 
N = 14 

1.2* (−0.2, 2.7) 
N = 14 

0.1 (0.5) 0.0 (−0.4, 0.8) 1.2* (0.9) 1.2* (−0.1, 2.3) 1.1* (1.1) 1.0* (−0.1, 3.5) 

Absolute reticulocytes, 109/L 

Baseline 229.4 (116.9) 219.3 
 (80.5, 511.0) 

275.3 (74.1) 
N = 3 

238.4  
(227.0, 360.6) 

N = 3 

252.3 (70.4) 274.1  
(125.6, 329.6) 

227.3 (105.8) 226.8  
(29.4, 366.0) 

EOT 163.3 (85.8) 
N = 14 

133.1  
(48.7, 351.6) 

N = 14 

241.9 (115.7) 261.8 
(85.2, 358.9) 

144.0 (121.1) 99.2  
(60.0, 433.9) 

130.1 (64.0) 135.2 
 (24.8, 219.1) 

CFB EOT −66.8* (107.0) 
N = 14 

−44.6* 
(−305.0, 
118.1) 
N = 14 

18.8 (98.0) 
N = 3 

11.0  
(−75.0, 120.5) 

N = 3 

−108.3* (114.7) −142.0* 
(−233.8, 133.4) 

−97.2* (66.3) −87.4*  
(−217.2, −4.6) 

Indirect bilirubin, mg/dL 

Baseline 1.9 (1.4) 1.3 (0.8, 5.2) 3.3 (1.6) 
N = 3 

2.8 (2.0, 5.0) 
N = 3 

3.1 (3.4) 1.7 (0.5, 10.5) 1.9 (1.4) 1.3 (0.7, 4.5) 

EOT 1.2 (0.7) 
N = 13 

0.9 (0.5, 2.9) 
N = 13) 

2.6 (1.5) 2.6 (0.8, 4.4) 1.8 (1.5) 0.9 (0.3, 3.8) 1.1 (0.8) 
 

0.7 (0.5, 2.6) 

CFB EOT −0.5* (0.8) 
N = 13 

−0.5* 
(−2.3, 0.5) 

N = 13 

−0.03 (0.5) 
N = 3 

0.21  
(−0.6, 0.3) 

N = 3 

−1.3 (2.5) −0.5  
(−7.0, 0.9) 

−0.8* (0.7) −0.6* 
(−1.9, −0.1) 

Lactate dehydrogenase, U/L 

Baseline 375.2 (142.9) 367.0 
(186, 683) 

391.8 (210.5) 352.0  
(180, 683) 

430.4 (159.0) 381.5  
(207, 699) 

391.4 (129.7) 368.5  
(251, 683) 

EOT 319.1 (87.7) 
N = 14 

323.0  
(193, 470) 

N = 14 

449.8 (209.5) 486.5 (192, 
634) 

311.4 (155.3) 280.0 (159, 
641) 

315.5 (94.0) 308.5 
 (199, 492) 

CFB EOT −38.4* (77.7)  −23.0*  58.0 (151.4) 17.0  −119.0* (113.3) −97.5*  −75.9 (173.2) −54.5  
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 OL 400 mg, 12-week cohort  
(N = 15) 

MAD pooled placebo  
(N = 4) 

MAD1, 300 mg  
(N = 8) 

MAD2, 600 mg  
(N = 8) 

 Mean (SD) Median  
(min, max) 

Mean (SD) Median  
(min, max) 

Mean (SD) Median 
(min, max)  

Mean (SD) Median  
(min, max) 

N = 14 (−213, 57)  
N = 14 

(−77, 275) (−283, 61) (−461, 90) 

P50, mmHg         

Baseline 29.9 (2.4) 
N =14 

30.3  
(25.8, 34.4) 

N = 14 

29.2 (5.9) 
N = 3 

30.5  
(22.8, 34.4) 

N = 3 

30.4 (1.3) 
N = 6 

30.8 
(28.3, 31.6)  

N = 6 

30.1 (2.2) 30.4  
(26.2, 33.2) 

EOT 26.6 (2.5) 
N = 14 

25.8  
(23.8, 32.1) 

N = 14 

31.4 (2.6) 31.3  
(28.5, 34.6) 

26.4 (1.6) 
N = 7 

26.6  
(23.8, 28.4) 

N = 7 

26.3 (1.9) 26.5 
(23.2, 28.9) 

CFB EOT −3.3* (2.0) 
N = 13 

−3.8* 
(−5.9, 1.9) 

N = 13 

2.0 (3.2) 
N = 3 

0.2  
(0.2, 5.7) 

N = 3 

−4.3* (1.9) 
N = 6 

−4.3*  
(−7.2, −1.6) 

N = 6 

−3.9* (1.6) −3.5* 
(−6.7, −2.3) 

PoS, mmHg 

Baseline 43.2 (7.1) 
N = 14 

43.1 
(22.0, 50.0) 

N = 14 

45.8 (4.9) 
N = 3 

48.1  
(40.1, 49.2) 

N = 3 

36.3 (9.2) 
N = 6 

39.1  
(19.0, 45.0) 

N = 6 

38.5 (8.6) 39.7  
(26.2, 49.2) 

EOT 35.1 (12.3) 
N = 14 

36.5 (9.5, 
51.0) 

N = 14  

63.2 (34.2) 52.8  
(34.6, 112.7) 

31.0 (9.7) 28.5 
 (18.1, 47.3) 

31.3 (3.8) 31.1  
(25.6, 36.2) 

CFB EOT −8.6* (8.2) 
N = 13 

−8.6* 
 (−22.8, 3.0) 

N = 13 

19.8 (38.1) 
N = 3 

1.3  
(−5.6, 63.5) 

N = 3 

−8.0* (5.7) 
N = 6 

−9.0* 
(−15.1, −0.9) 

 N = 6 

−7.3* (7.0) −7.2* 
(−15.4, 4.6) 
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 OL 400 mg, 12-week cohort  
(N = 15) 

MAD pooled placebo  
(N = 4) 

MAD1, 300 mg  
(N = 8) 

MAD2, 600 mg  
(N = 8) 

 Mean (SD) Median  
(min, max) 

Mean (SD) Median  
(min, max) 

Mean (SD) Median 
(min, max)  

Mean (SD) Median  
(min, max) 

Elmin 

Baseline 0.12 (0.07) 
N = 14 

0.11 (0.0, 0.3) 
N = 14 

0.13 (0.15) 
N = 3 

0.18 (0, 0.3) 
N = 3 

0.11 (0.10) 
N = 6 

0.07 (0, 0.3) 
N = 6 

0.19 (0.11) 0.15 (0.1, 0.4) 

EOT 0.16 (0.14) 
 N = 14 

0.12 (0.0, 0,5) 
N = 14 

0.06 (0.11) 0.03 (0.0, 0.2) 0.18 (0.15) 0.12 (0.1, 0.5) 0.23 (0.10) 0.21 (0.1, 0.5) 

CFB EOT 0.05 (0.10) 
N = 13 

0.04 (−0.1, 
0.2) 

N = 13 

−0.06 (0.19) 
N = 3 

0.04 (−0.3, 0.1) 
N = 3 

0.10 (0.11) 
N = 6 

0.05 (0, 0.2) 
N = 6 

0.04 (0.05) 
 

0.06 (0, 0.1) 

Elmax 

Baseline 0.45 (0.10) 
N = 14 

0.46  
(0.2, 0.5) 
N = 14 

0.38 (0.19) 
N = 3 

0.49 (0.2, 0.5)  
N = 3 

0.43 (0.14) 
N = 6 

0.43 
(0.3, 0.6) 

N = 6 

0.48 (0.06) 0.49 (0.4, 0.6) 

EOT 0.47 (0.08) 
N =14 

0.49 (0.2, 0.5) 
N = 14 

0.40 (0.14) 0.44 (0.2, 0.5) 0.49 (0.08) 0.51 (0.3, 0.6) 0.51 (0.04) 0.51 (0.4, 0.6) 

CFB EOT 0.02 (0.05) 
N = 13 

0.01 (−0.1, 
0.1) 

N = 13 

0.00 (0.05) 
N = 3 

0.02 (−0.1, 0) 
N = 3 

0.05 (0.08) 
N = 6 

0.02 (0, 0.2) 
N = 6 

0.03 (0.049) 0.02 (0, 0.1) 

Hyper (dense) RBCs, % 

Baseline 3.2 (2.5) 
N = 14 

2.8 (1.0, 11.1) 
N = 14 

5.0 (5.4) 
N = 3 

2.7 (1.1, 11.1) 
N = 3 

4.0 (3.1) 
N = 7 

3.3 (0.9, 8.9) 
N = 7 

2.5 (1.1) 2.6 (1.0, 4.1) 

EOT 2.8 (2.1) 
N = 14 

2.0 (1.2, 8.9) 
N = 14 

4.8 (3.3) 3.9 (1.9, 9.6) 2.6 (1.8) 2.1 (1.1, 6.9) 1.9 (0.9) 1.9 (0.7, 3.3) 

CFB EOT −0.3 (1.6) 
N = 13 

−0.4 (−2.5, 
2.7) 

N = 13 

0.2 (1.5) 
N = 3 

0.8 (−1.5, 1.3) 
N = 3 

−1.3 (1.7) 
N = 7 

−1.8 (−4.2, 
0.7) 

N = 7 

−0.6 (1.1) −0.8 (−2.1, 
1.4) 

CHCM, g/dL 

Baseline 33.0 (1.3)  
N = 14 

32.8 
(30.6, 35.3) 

32.6 (2.3) 
N = 3 

32.3  
(30.5, 35.1) 

33.0 (0.9) 
N = 7 

33.0  
(31.7, 34.3) 

32.3 (1.3) 32.6  
(30.3, 34.3) 
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 OL 400 mg, 12-week cohort  
(N = 15) 

MAD pooled placebo  
(N = 4) 

MAD1, 300 mg  
(N = 8) 

MAD2, 600 mg  
(N = 8) 

 Mean (SD) Median  
(min, max) 

Mean (SD) Median  
(min, max) 

Mean (SD) Median 
(min, max)  

Mean (SD) Median  
(min, max) 

N = 14 N = 3 N = 7  

EOT 32.5 (1.5) 
N = 14 

32.2  
(30.8, 36.1) 

N = 14 

33.5 (1.0) 33.4  
(32.5, 34.8) 

32.4 (0.9) 32.2  
(31.3, 33.8) 

31.7 (1.3) 31.6  
(29.2, 33.6) 

CFB EOT −0.6 (1.1) 
 N = 13 

−0.9 (−1.8, 
2.3) 

N = 13  

1.0 (1.2) 
N = 3 

1.3 (−0.3, 2.0) 
N = 3 

−0.7* (0.6) 
N = 7 

−0.7* (−1.4, 
0.3) 

N = 7 

−0.6 (0.8) −0.9 (−1.3, 
0.6) 

TNF-α, pg/mL 

Baseline 1.2 (0.5)  
N = 14 

1.1 (0.6, 2.2) 
N = 14 

1.7 (0.7) 
N = 2 

1.7 (1.3, 2.2) 
N = 2 

1.2 (0.5) 1.1 (0.6, 2.0) 1.4 (0.5) 
N = 7 

1.2 (0.8, 2.0) 
N = 7 

EOT 0.8 (0.4) 
N = 13 

0.9 (0.2, 1.6) 
N = 13 

1.3 (0.1) 1.2 (1.1, 1.5) 1.4 (0.6) 
N = 7 

1.4 (0.7, 2.3) 
N = 7 

0.7 (0.4) 0.8 (0.2, 1.3) 

CFB EOT −0.3 (0.7) 
N = 12 

−0.1 (−1.7, 
0.4) 

N = 12 

−0.5 (0.6) 
N = 2 

−0.5 (−0.9, 
−0.1) 
N = 2 

0.1 (0.6) 
N = 7 

0.0 (−0.6, 1.0) 
N = 7 

−0.5* (0.6) 
N = 7 

−0.3* (−1.7, 0) 
N = 7 

MMP-9, ng/mL 
 

Baseline 440.1 (282.4) 
N = 13 

434.7 
(90.3, 929.4) 

N = 13 

573.1  
N = 1 

573.1  
(573.1, 573.1) 

N = 1 

ND ND 451.2 (313.5) 
N = 7 

434.7  
(97.2, 929.4) 

N = 7 

EOT 296.0 (354.0) 
N = 13 

175.6  
(0.0, 1280.9) 

N = 13 

280.9 (96.6) 
N = 2 

280.9  
(212.6, 349.1) 

N = 2 

ND ND 282.2 (176.2) 242.4  
(69.3, 602.3) 

CFB EOT −149.8* (259.3) 
N = 11 

−175.6* 
(−627.8, 
351.5) 
N = 11 

−224.0  
N = 1 

−224.0  
(−224.0, 
−224.0) 
N = 1 

ND ND −193.3* (215.4) 
N = 7 

−96.3* 
(−615.5, 
−18.5) 
N = 7 

Leukocytes, 109/L 
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 OL 400 mg, 12-week cohort  
(N = 15) 

MAD pooled placebo  
(N = 4) 

MAD1, 300 mg  
(N = 8) 

MAD2, 600 mg  
(N = 8) 

 Mean (SD) Median  
(min, max) 

Mean (SD) Median  
(min, max) 

Mean (SD) Median 
(min, max)  

Mean (SD) Median  
(min, max) 

Baseline 9.6 (4.9) 7.9  
(5.0, 24.5) 

11.2 (4.6) 10.4 
(6.9, 17.3) 

8.8 (4.4) 
 

7.5  
(4.4, 15.8) 

8.6 (2.9) 7.9  
(6.0, 14.7) 

EOT 8.2 (3.3) 
N = 14 

8.9 (2.7, 13.1) 
N = 14 

11.1 (6.1) 9.0 (6.3, 20.1) 7.1 (3.4) 5.9 (3.9, 14.4) 6.2 (2.1) 5.5 (4.1, 9.9) 

CFB EOT −1.4 (3.7)  
N = 14 

−1.1  
(−12.1, 3.0) 

N = 14 

−0.1 (2.3) −0.3  
(−2.8, 2.8) 

−1.7* (2.1) −1.5*  
(−6.4, 0.2) 

−2.4 (2.7) −1.7 
(−6.9, 1.2) 

Prothrombin fragment 1.2, pmol/L 

Baseline 672.4 (1235.1) 
N = 14 

350.5 
(150, 4900) 

N = 14 

377.0 (234.7) 
N = 3 

366.0  
(148, 617) 

N = 3 

2305.7 (4750.1) 
N = 6 

380.5  
(252, 12 000) 

N = 6 

1341.2 
(1768.7) 

N = 6 

665.0  
(371, 4900) 

N = 6 

EOT 297.0 (151.0) 
N = 13 

260.0  
(106, 659) 

N = 13 

352.3 (23.7) 352.5 (323, 
381) 

408.5 (189.3) 
N = 6 

394.0 (177, 
663) 
N = 6 

1923.6 
(4078.4) 

543.0  
(154, 12000) 

CFB EOT −91.1 (249.2) 
N = 12 

1.0  
(−720, 154) 

N = 12 

−25.0 (205.7) 
N = 3 

−14.0 
 (−236, 175) 

N = 3 

25.0 (171.8) 
N = 5 

35.0  
(−199, 278) 

N = 5 

−912.3 
(1843.3) 

N = 6 

−323  
(−4611, 353) 

N = 6 

D-dimer, µg/mL FEU 

Baseline 2.4 (1.4)  
N = 13 

2.1 (0.6, 5.9) 
N = 13 

2.5 (1.2) 
N = 3 

2.1 (1.6, 3.8) 
N = 3 

2.5 (2.3) 
N = 5 

1.9 (0.2, 6.3)  
N = 5 

3.4 (1.5) 
N = 6 

3.3 (1.6, 5.9) 
N = 6 

EOT 1.9 (1.0) 
N = 13 

1.8 (0.2, 3.7) 
N=13 

2.2 (0.6) 2.2 (1.6, 2.9) 3.0 (1.7) 
N = 6 

3.4 (1.1, 5.1) 
N = 6 

2.7 (1.5) 
 

2.6 (0.9, 5.0) 
 

CFB EOT −0.6 (1.5)  
N = 12 

−0.4 (−3.2, 
1.6) 

N = 12 

−0.3 (1.7) 
N = 3 

−0.2 (−2.1, 
1.4) 

N = 3 

0.3 (1.2) 
N = 5 

0.7 (−1.2, 1.8) 
N = 5 

−0.6 (1.5) 
N = 6 

−0.6 (−3.0, 
1.7) 

N = 6 

Erythropoietin, mIU/mL 

Baseline 104.7 (63.6)  
N = 13 

94.4 
(17.0, 244.9) 

157.1 
N = 1 

157.1  
(157.1, 157.1) 

92.1 (50.1) 
N = 2 

92.1  
(56.6, 127.5) 

152.0 (130.4) 
N = 7 

106.7  
(65.9, 441.6) 
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 OL 400 mg, 12-week cohort  
(N = 15) 

MAD pooled placebo  
(N = 4) 

MAD1, 300 mg  
(N = 8) 

MAD2, 600 mg  
(N = 8) 

 Mean (SD) Median  
(min, max) 

Mean (SD) Median  
(min, max) 

Mean (SD) Median 
(min, max)  

Mean (SD) Median  
(min, max) 

N = 13 N = 1 N = 2 N = 7 

EOT 88.0 (65.9) 
N = 13 

56.7  
(17.5, 234.1) 

N = 13 

159.0 (94.6) 
N = 2 

159.0  
(92.1, 225.9) 

N = 2 

82.8 (35.6) 
N = 2 

82.8  
(57.6, 108.0) 

N = 2 

149.3 (142.5) 128.2  
(17.8, 473.8) 

CFB EOT −18.6* (44.8) 
N = 11 

−29.4* 
(−76.0, 73.9)  

N = 11 

−65.0  
N = 1 

−65.0  
(−65.0, −65.0) 

N = 1 

−69.9 
N = 1 

−69.9  
(−69.9, −69.0) 

N = 1 

6.3 (70.5) 
N = 7 

32.2  
(−109.6, 81.5) 

N = 7 

ATP, adenosine triphosphate; CFB, change from baseline; CHCM, cellular hemoglobin concentration mean; Elmax, maximum 

elongation index; Elmin, minimum elongation index; EOT, end of treatment; Hb, hemoglobin; LDH, lactate dehydrogenase; LS, least 

squares; MAD, multiple ascending dose; ND, not done; max, maximum; min, minimum; MMP-9, matrix metalloproteinase-9; OL, 

openlabel; PoS, point of sickling; P50, oxygen tension at which hemoglobin is 50% saturated; RBC, red blood cell; TNF-α, tumor 

necrosis factor-alpha; 2,3-DPG, 2,3 diphosphoglycerate. 

Note: The N-values represent patients with non-missing values. 

*P < .05 for baseline versus EOT comparison.  For the MAD cohorts, P values were obtained from a Wilcoxon signed rank test. For 

the OL cohort, P values for hemoglobin, LDH, reticulocytes, indirect bilirubin, were derived from LS means using a mixed model for 

repeated measurement, with hematology/hemolysis assessment as dependent variable and scheduled visit during treatment period 

as a fixed effect. An unstructured covariance was used for hemoglobin, LDH, and reticulocytes. A compound symmetry covariance 

was used for indirect bilirubin, normalized ATP, and normalized 2,3-DPG. In the OL cohort, P values for normalized 2,3-DPG, 

normalized ATP, P50, PoS, Elmin, Elmax, hyper RBCs, CHCM, TNF-α, MMP-9, leukocytes, prothrombin fragment 1.2, D-dimer, and 

erythropoietin were derived from a Wilcoxon signed rank test.  

†For the MAD cohorts, baseline was defined as the last measurement obtained prior to the first dose of study drug. For the 12-week 

cohort, baseline was defined as average of prior-treatment measurements (screening and predose on day 1) for patients who were 

newly enrolled in the 12-week cohort; for patients who were enrolled in the MAD2 (600 mg) cohort and later rolled over into the 12-
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week cohort, baseline was defined as the average of prior treatment measurements (screening and predose on day 1) in the MAD2 

(600 mg) period. 

‡Sample sizes that deviate from those in the column header are indicated in the appropriate cells. 

§EOT was day 14/15 (24 hours after last dosing) in the MAD cohorts and day 84/85 (24 hours after last dosing) in the OL cohort. 

||One MAD1 (300 mg) patient was excluded from 2,3 DPG, ATP, and P50 analyses because the patient only took 1 dose of study drug 

on day 1.
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Table 4. Hemoglobin responders at any time during treatment (all cohorts)  

 Placebo or etavopivat once daily 

 MAD Placebo 

0 mg 

MAD1 

300 mg 

MAD2 

600 mg 

OL 

400 mg 

Weeks 2 2 2 12 

N 4 8 8 15 

Maximal Hb increase, 

mean (range), g/dL  

0.4 (0.0–0.6) 1.4 (0.4–2.4) 1.4 (0.2–3.5) 1.6 (0.8–2.8) 

Hb increase >1 g/dL 

response on treatment, 

n (%) 

0  7 (87.5) 4 (50.0) 11 (73.3) 

Maximal Hb increase in 

patients with >1 g/dL 

response, mean 

(range), g/dL 

NA 1.5 (1.1–2.4) 2.2 (1.5–3.5) 1.9 (1.2–2.8) 

Hb, hemoglobin; MAD, multiple ascending dose; NA, not assessed; OL, openlabel. 

Note: Only measurements up to end of treatment were included. 
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FIGURE LEGENDS 

Figure 1. Study design. Patients in the MAD2 cohort could directly rollover into the OL cohort 

at the time of their end-of-study visit if they tolerated the 2-week treatment period and continued 

to meet eligibility criteria. Patients from other cohorts and the study sites could also enroll in the 

OL cohort. In the OL cohort, protocol amendment 7.0 allowed etavopivat dosing to extend from 

2 days to up to 2 weeks beyond day 84, allowing a stepwise dose decrease in patients with a 

>2.0 g/dL increase in hemoglobin over baseline or if clinically indicated. MAD, multiple 

ascending dose; OL, openlabel. 

 

Figure 2. Etavopivat Concentration versus time following daily dosing in patients with 

sickle cell disease (MAD and OL cohorts). Mean (standard deviation) etavopivat 

concentrations following daily dosing on day 14 (MAD) or day 84 (OL) at the indicated time point 

(hours).  MAD, multiple ascending dose; OL, openlabel; SD, standard deviation. 

 

Figure 3. Pharmacodynamics in patients with sickle cell disease. Mean RBC 2,3-DPG and 

ATP concentrations in the MAD (A, C), and OL (B, D) cohorts. Values were normalized by 

dividing the hemoglobin value at each time point to adjust for a dilution effect from increased 

hemoglobin (A, B, C, D). The P50 value as a function of intracellular 2,3-DPG concentration in 

the MAD (excluding placebo patients) and OL cohorts 24 hours after the last dose (E). Scatter 

plot at baseline and EOT for P50 in the OL cohort (Median BL and EOT values shown in red and 

blue diamonds, respectively) (F); each data point corresponds to data from 1 patient. Paired 

baseline and end-of-treatment data points from each patient are connected by a line. In the 

MAD cohorts (A, C), P values were based on Wilcoxon signed rank tests to test the changes at 

EOT from baseline. In the OL cohort (B, D), PD values with statistical significance compared to 

baseline were identified with an asterisk (*P < .05) at their scheduled visits, based on MMRM, 

which included PD values as dependent variable, and a fixed effect of scheduled visit during the 

treatment period with compound symmetry covariance matrix to model the within-patient 

variance-covariance errors; the EOT P values were derived from Wilcoxon signed rank tests. 

Statistical tests were not performed for the visits after EOT. P values in the scatter plot are from 

a Wilcoxon matched-pairs signed rank test (F). One MAD1 (300 mg) patient was excluded from 

2,3 DPG, ATP, and P50 analyses because the patient only took 1 dose of study drug on day 1. 

ATP, adenosine triphosphate; BL, baseline; CFB, change from baseline; EOT, end of treatment; 

Hb, hemoglobin; MAD, multiple ascending dose; MMRM, mixed model for repeated 
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measurement; OL, openlabel; P50, the partial pressure of dissolved O2 at which hemoglobin is 

50% saturated with oxygen; PD, pharmacodynamic; 2,3-DPG, 2,3-diphosphoglycerate. 

 

Figure 4. Change in hemoglobin response in patients with sickle cell patients (MAD and 

OL cohorts). Mean (± SE) hemoglobin concentration over time in the MAD (A) and OL (B) 

cohorts. Values for mean change from baseline at EOT are shown on the graphs (A, B). In the 

MAD cohorts, EOT was equal to the day 15 value if available, otherwise EOT was equal to day 

14 (A). In the OL cohort, EOT was equal to the day 85 value if available, otherwise EOT was 

equal to day 84 (B). Scatter plots at baseline and EOT for MAD pooled placebo (C), MAD1 (D), 

MAD2 (E), and OL (F); each data point corresponds to data from 1 patient. Median BL and EOT 

values shown in red and blue diamonds, respectively (C-F). Paired baseline and end-of-

treatment data points from each patient are connected by a line. In the MAD cohorts (A), P 

values were based on Wilcoxon signed rank tests to test the changes at EOT from baseline. In 

the OL cohort (B), hemoglobin values with statistical significance as compared to baseline were 

identified using asterisks  (*P ≤ .0001, **P < .01) at their scheduled visits, based on MMRM, 

which included hemoglobin values as a dependent variable, and a fixed effect of scheduled 

visits during the treatment period, with unstructured covariance matrix to model the within-

patient variance-covariance errors. Statistical tests were not performed for the visits after EOT. 

P values in the scatter plots are from a Wilcoxon matched-pairs signed rank test (C, D, E, F). 

BL, baseline; CFB, change from baseline; EOT, end of treatment; MAD, multiple ascending 

dose; MMRM, mixed model for repeated measurement; OL, openlabel; SE, standard error. 

 

Figure 5. Hemolysis markers in patients with sickle cell disease (MAD and OL cohorts).  

Mean (± SE) absolute reticulocytes, indirect bilirubin, and LDH over time in the MAD cohorts (A, 

B, C, respectively) and OL cohorts (D, E, F, respectively). In the MAD cohorts (A,B,C), P values 

were based on Wilcoxon signed rank tests to test the changes at EOT from baseline. In the OL 

cohort (D,E,F), hemolysis marker values with statistical significance as compared to baseline 

were identified using an asterisk (*P ≤ .05) at their scheduled visits, based on MMRM, which 

included hemolysis marker values as a dependent variable, and a fixed effect of scheduled 

visits during the treatment period. An unstructured covariance was used for LDH and 

reticulocytes, and a compound symmetry covariance was used for indirect bilirubin. Statistical 

tests were not performed for the visits after EOT. BL, baseline; CFB, change from baseline; 

EOT, end of treatment; LDH, lactate dehydrogenase; MAD, multiple ascending dose; MMRM,  

mixed model for repeated measurement OL, openlabel. 
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Figure 6. Markers of RBC physiology (OL cohort). Scatter plots for PoS (A), Elmin (B), Elmax 

(C), and dense (hyper) RBCs (D) at baseline and EOT. Each data point corresponds to data 

from 1 patient. Paired baseline and EOT data points from each patient are connected by a line. 

Median BL and EOT values shown in red and blue diamonds, respectively. P values are from a 

Wilcoxon matched-pairs signed rank test. % hyper RBC is defined as the percent of RBCs with 

>41 g/dL of hemoglobin. BL, baseline; DRBC, dense red blood cell; Elmax, maximum elongation 

index; Elmin, minimum elongation index; EOT, end of treatment; OL, openlabel; PoS, point of 

sickling; RBC, red blood cell.  

 

Figure 7. Systemic markers of sickle cell disease pathophysiology in patients with sickle 

cell disease (OL cohort). Each data point corresponds to data from 1 patient. Paired baseline 

and EOT data points from each patient are connected by a line. Median BL and EOT values 

shown in red and blue diamonds, respectively. P values are from a Wilcoxon matched-pairs 

signed rank test. TNF-α (A), MMP-9 (B), leukocytes (C), prothrombin 1.2 (D), D-dimer (E), and 

erythropoietin (F). MMP-9, matrix metalloproteinase-9; OL, openlabel; EPO, erythropoietin; 

EOT, end of treatment; TNF-α, tumor necrosis factor-alpha. 
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