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Abstract:
Bispecific T cell engagers (TCE) are revolutionizing patient care in multiple myeloma (MM). These
monoclonal antibodies, that redirect T cells against cancer cells, are now approved for the
treatment of triple-class exposed relapsed refractory multiple myeloma (RRMM). They are currently
tested in earlier lines of the disease, including in first line. Yet, primary resistance occurs in
about one third of RRMM patients, and most responders eventually develop acquired resistance.
Understanding the mechanisms of resistance to bispecific TCE is thus essential to improve
immunotherapies in MM. Here, we review recent studies investigating the clinical and molecular
determinants of resistance to bispecific TCE. Resistance can arise from tumor-intrinsic or tumor-
extrinsic mechanisms. Tumor-intrinsic resistance involves various alterations leading to the loss
of the target antigen such as chromosome deletions, point mutations or epigenetic silencing. Loss
of MHC class I, preventing MHC class I:TCR co-stimulatory signaling, was also reported. Tumor-
extrinsic resistance involves abundant exhausted T cell clones and several factors generating an
immunosuppressive microenvironment. Importantly, some resistance mechanisms impair response to one
TCE while preserving the efficacy of others. We next discuss the clinical implications of these
findings. Monitoring the status of target antigens in tumor cells and their immune environment will
be key to select the most appropriate TCE for each patient, and to design combination and
sequencing strategies for immunotherapy in multiple myeloma.-
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Abstract  19 
Bispecific T cell engagers (TCE) are revolutionizing patient care in multiple myeloma (MM). These 20 
monoclonal antibodies, that redirect T cells against cancer cells, are now approved for the treatment 21 
of triple-class exposed relapsed refractory multiple myeloma (RRMM). They are currently tested in 22 
earlier lines of the disease, including in first line. Yet, primary resistance occurs in about one third of 23 
RRMM patients, and most responders eventually develop acquired resistance. Understanding the 24 
mechanisms of resistance to bispecific TCE is thus essential to improve immunotherapies in MM. 25 
Here, we review recent studies investigating the clinical and molecular determinants of resistance to 26 
bispecific TCE. Resistance can arise from tumor-intrinsic or tumor-extrinsic mechanisms. Tumor-27 
intrinsic resistance involves various alterations leading to the loss of the target antigen such as 28 
chromosome deletions, point mutations or epigenetic silencing. Loss of MHC class I, preventing MHC 29 
class I:TCR co-stimulatory signaling, was also reported. Tumor-extrinsic resistance involves abundant 30 
exhausted T cell clones and several factors generating an immunosuppressive microenvironment. 31 
Importantly, some resistance mechanisms impair response to one TCE while preserving the efficacy 32 
of others. We next discuss the clinical implications of these findings. Monitoring the status of target 33 
antigens in tumor cells and their immune environment will be key to select the most appropriate TCE 34 
for each patient, and to design combination and sequencing strategies for immunotherapy in 35 
multiple myeloma.  36 
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 2 

Introduction 37 
The prognosis of patients with relapsed refractory multiple myeloma (RRMM) with prior exposure to 38 
immunomodulatory drugs (IMiDs), proteasome inhibitors (PI) and anti‐CD38 monoclonal antibodies 39 
(anti‐CD38 mAb) remains poor1. In this population, chimeric antigen receptor T cell (CAR‐T cell)  and 40 
bispecific T-cell engagers (TCE) targeting B‐cell maturation antigen (BCMA) represent a new standard 41 
of care. Idecabtagene vicleucel (ide‐cel, anti-BCMA CAR-T) has been approved based on an overall 42 
response rate (ORR) of 73% and a median progression-free survival (PFS) of 8.8 months in heavily 43 
pretreated triple-class exposed myeloma patients2. Ciltacabtagene autoleucel (cilta‐cel, another anti-44 
BCMA CAR-T) has also been approved in this population based on an ORR of 97.9% and a median PFS 45 
of 34.5 months3. Despite this favorable efficacy profile, accessibility and manufacturing process still 46 
represent a limitation for broad use of CAR-T cells in multiple myeloma4. Bispecific TCE are readily 47 
available off-the-shelf monoclonal antibodies able to bind to an antigen on tumor cells and to 48 
another antigen on T cells to redirect these lymphocytes toward malignant cells5. To date, two 49 
bispecific TCE, teclistamab and elranatamab, targeting CD3 on T cells and BCMA on myeloma cells, 50 
have been approved for the treatment of triple-class exposed RRMM. In the Majestec-1 study, 51 
teclistamab led to an ORR of 63% and a median PFS of 11.3 months in triple-class exposed patients 52 
who received a median number of 5 prior lines6. In the Magnetismm-3 study (cohort A), elranatamab 53 
led to an ORR of 61% and a median PFS of approximately 15 months in triple-class exposed patients 54 
who received a median number of 5 prior lines7. Bispecific TCE targeting other tumor antigens (i.e. 55 
FCRH5, GPRC5D) also demonstrated promising activity in relapsed MM8. Recently, talquetamab, 56 
another bispecific TCE targeting G-protein coupled receptor family C group 5 member D (GPRC5D), 57 
has also been approved in RRMM patients, based on the results of the MONUMENTAL-1 study9,10. In 58 
a population of advanced, T-cell redirecting agent naive myeloma patients (n=145, 69%  triple-class 59 
refractory, median of 5 prior lines), talquetamamb (0.8 mg/kg biweekly) single agent demonstrated 60 
an ORR of 72% and a median PFS of 14 months. In patients previously exposed to a T-cell redirecting 61 
agent (n=51), talquetamab resulted in an ORR of 64% with a median duration of response of 11.9 62 
months. Despite this favorable efficacy profile, nearly one third of patients do not respond to 63 
bispecific therapy (primary resistance). Moreover, most responding patients treated with bispecific 64 
antibodies will finally develop disease progression (acquired resistance). The present review aims at 65 
describing the tumor-intrinsic and tumor-extrinsic mechanisms leading to bispecific TCE resistance. 66 
 67 

 68 

Clinical determinants of resistance to bispecific TCE 69 
To date, the BCMA-targeting TCE teclistamab and elranatamab are approved for the treatment of 70 
RRMM who received at least 3 lines of prior therapy and are triple-class exposed. Data from clinical 71 
trials identified several baseline clinical characteristics as predictors of poor response to BCMA-72 
targeted BsAb, including presence of extramedullary disease (EMD), International Staging System 73 
(ISS) stage III and refractory status. In Magnetismm-3, patients with EMD had an ORR of 38.5% to 74 
elranatamab, in comparison to 71.4% for patients without EMD7. Patients with ISS III (versus ISS I-II) 75 
and penta refractory disease (versus not penta refractory) also had an inferior response rate to 76 
elranatamab. In Majestec-1, ORR to teclistamab was also significantly inferior in patients with EMD 77 
or ISS III6. Lower response rate to teclistamab in EMD patients could be related to higher level of 78 
soluble BCMA in this population11. High tumor burden was also associated with lower response rate 79 
to elranatamab (bone marrow (BM) plasma cells > 50%) and teclistamab (BM plasma cells > 60%)6,7. 80 
In contrast, high cytogenetic risk was not found to significantly impact response rate to these two 81 
drugs6,7. Talquetamab is to date the only approved BsAb targeting GPRC5D. In Monumental-1, the 82 
presence of extramedullary disease was the only baseline clinical characteristic found to significantly 83 
influence response rate, with a median ORR of 48.5% and 43.2% in the weekly and biweekly cohorts 84 
in patients with EMD, versus 81.8 and 88% in the weekly and biweekly cohorts9. ISS, cytogenetic and 85 
refractory status did not significantly impact response to talquetamab in this study. 86 
 87 
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 88 

Tumor-intrinsic mechanisms of resistance 89 
Genetic inactivation of TNFRSF17 90 
Whole genome sequencing (WGS) of myeloma cells before BCMA-targeting TCE therapy and at 91 
relapse identified genetic inactivation of TNFRSF17 gene (encoding BCMA protein) as a common 92 
tumor-intrinsic resistance mechanism. Truger et al. reported a first case of BCMA antigen loss due to 93 
a homozygous deletion of TNFRSF17 gene12. More recently, Lee et al. analyzed 14 patients with 94 
disease progression on BCMA-targeting TCE therapy, and revealed biallelic TNFRSF17 inactivation in 6 95 
cases (42.8%), by homozygous deletion (n=1) or mono-allelic loss with mutation (n=5)13. Two patients 96 
displayed convergent evolution, with the emergence of several resistant clones harboring distinct 97 
TNFRSF17 alterations, highlighting the strong selective pressure imposed by TCE. TNFRSF17 98 
mutations involved hotspots in the extracellular domain of BCMA, with one missense p.Arg27Pro 99 
mutation and two in-frame deletions p.Pro34del (found in 3 patients) and p.Ser30del (in 2 patients). 100 
Mutant proteins were still recognized by polyclonal anti-BCMA antibodies and retained the ability to 101 
bind APRIL (a proliferation-inducing ligand) and activate the prosurvival NF-κB signaling. However, 102 
BCMA extracellular domain mutations abrogated TCE binding and TCE-induced cell death. 103 
Importantly, TNFRSF17 mutations conferred distinct sensitivities to different anti-BCMA TCE. In vitro, 104 
cells harboring p.Arg27Pro and p.Pro34del mutations were resistant to teclistamab and elranatanab 105 
but remained sensitive to alnuctamab, whereas cells with p.Ser30del mutation were resistant to 106 
teclistamab but remained sensitive to elranatanab and alnuctamab. These data in cell lines need to 107 
be confirmed in vivo but suggest that myelomas resistant to one anti-BCMA TCE might still be 108 
sensitive to another targeting a different epitope. 109 
 110 
Genetic or epigenetic inactivation of GPRC5D  111 
Tumor-intrinsic mechanisms of resistance to the GPRC5D-targeting TCE talquetamab were assessed 112 
in two synchronous studies13,14. Combining deep WGS and single-cell multi-omics, Derrien et al. 113 
reported convergent evolution in a patient with a clonal 12p deletion (encompassing GPRC5D locus) 114 
in the pre-treatment sample. Seven resistant subclones emerged at relapse, each having acquired a 115 
distinct second hit in GPRC5D (3 frameshift indels, 2 nonsense mutations, 1 in-frame deletion and a 116 
large deletion encompassing the transcription start site) leading to the complete loss of GPRC5D 117 
protein at the cell surface14. Similarly, Lee et al. reported 4 talquetamab-resistant cases with biallelic 118 
GPRC5D inactivation due to homozygous deletion or mono-allelic deletion with mutation (1 119 
frameshift indel, 1 missense and 2 nonsense mutations)13. The mutation landscape of GPRC5D mostly 120 
involves truncating mutations distributed all along the protein sequence, in sharp contrast with the 121 
hotspot mutations in TNFRSF17 that alter TCE recognition while preserving BCMA-mediated pro-122 
survival signaling (Fig. 1). Finally, Derrien et al. reported two talquetamab-resistant cases with a loss 123 
of GPRC5D expression due to the long-range epigenetic silencing of its promoter and enhancer 124 
regions, in absence of any genetic alteration14. This is a proof-of-concept that epigenetic remodeling 125 
alone can induce TCE resistance by silencing the transcription of the antigen. Overall, resistance to 126 
GPRC5D-targeting TCE usually involved a complete inactivation of the target, suggesting that 127 
myeloma cells better tolerate the loss of GPRC5D than the loss of BCMA. Consistently, reduced or 128 
lost GPRC5D expression was observed in 6/6 cases who relapsed after anti-GPRC5D CAR-T therapy15, 129 
while loss of BCMA expression was rare after anti-BCMA CAR-T therapy (3/71, 4%)16. BCMA promotes 130 
the growth of MM cells, protects them from apoptosis and promotes immunosuppression in the 131 
bone marrow microenvironment17,18. These pro-survival effects may prevent the selection of clones 132 
with BCMA inactivation, even in the presence of anti-BCMA treatment. 133 
 134 
Loss of MHC class I 135 
Using single-cell RNA-seq and TCR tracing, Friedrich et al. explored the dynamic response of T cells in 136 
myeloma patients treated with anti-BCMA TCE19. TCE response was driven by the clonal expansion of 137 
effector CD8+ T cells, but also naive T cells. Importantly, MHC class I interaction with tumor cells and 138 
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 4 

MHC class I:TCR co-stimulatory signaling were required for the functional recruitment and priming of 139 
naive T cell clones. Several lines of evidence highlighted the loss of MHC class I as a potential tumor-140 
intrinsic mechanism of TCE resistance beyond loss of the target antigen. First, the expression of MHC 141 
class I (HLA-E, HLA-C) and class II genes (CD74) was deregulated in response to TCE treatment. 142 
Second, loss of MHC class I surface expression was identified at relapse by flow cytometry in some 143 
patients. However, the frequency and causal mechanism of this loss of MHC class I expression remain 144 
to be established.  145 

 146 

 147 

Tumor-extrinsic mechanisms of resistance 148 
The response to bispecific TCE treatment is impacted by several tumor-extrinsic factors including the 149 
pre-existing T cell landscape, its evolution and the immunosuppressive tumor microenvironment 150 
created by myeloma cells and related to previous treatments19–21. In a preclinical study, Verkleij et al. 151 
showed that talquetamab-mediated killing of MM cells is impaired by an increased proportion of 152 
several T cell populations, including T cells expressing the exhaustion marker PD-1, activated T cells 153 
expressing HLA-DR and regulatory T cells (Treg)20. In the transplantable Vk*MYC MM mouse model, T 154 
cells upregulated PD-1 expression in response to anti BCMAxCD3 bispecific TCE and diminished in 155 
functionality over time, leading to systematic relapse post-treatment21. Interestingly, the addition of 156 
pomalidomide, an immunomodulatory drug (IMiD), increased the expansion of lytic T cells and short-157 
term efficacy of the TCE, but also induced important toxicity and exacerbated T cell exhaustion, 158 
leading to only marginal survival benefit in this preclinical model. In contrast, a combination of the 159 
BCMA-targeting TCE with cyclophosphamide was safe and allowed long-term myeloma control by 160 
reducing tumor burden, depleting regulatory T cells and preventing TCE-induced T-cell exhaustion. In 161 
line with these preclinical studies, Friedrich et al. found that the abundance of exhausted CD8+ T cell 162 
clones predicts response failure to BCMAxCD3 bispecific TCE in MM patients19. Consistently, van de 163 
Donk et al. reported baseline immune characteristics predicting unfavorable response to the same 164 
TCE, including lower T cell numbers, higher T cells expressing PD-1, TIM-3 or CD38, increased Tregs 165 
and CD38+ Tregs, and lower proportion of naive T cells22. These studies stressed the importance of 166 
the pre-existing T cell repertoire in the response to bispecific TCE therapy. Other factors generate an 167 
immunosuppressive environment in multiple myeloma and may contribute to TCE resistance, 168 
including the interaction beween MM and bone marrow stromal cells (BMSC), inhibitory cytokines 169 
(TGF-ß, IL-6 or IL-10) and myeloid cells23,24. The interaction between MM and BMSC has been shown 170 
to protect MM cells from T-cell cytotoxicity25,26. In vitro, the addition of BMSC impaired the 171 
talquetamab-mediated lysis of MM cell lines20. This protective effect involved cell-cell contact but 172 
not BMSC-derived soluble factors nor a reduction in T-cell activation, suggesting the induction of 173 
tumor cell-intrinsic resistance mechanisms. Inhibitor myeloid cells such as myeloid-derived 174 
suppressor cells (MDSC) and plasmacytoid dendritic cells (pDC) have also been reported to drive an 175 
immunosupressive environment favoring MM progression27–30. Their potential role in TCE resistance 176 
remains to be explored in patients. 177 
 178 
Tumor-intrinsic and tumor-extrinsic mechanisms of TCE resistance are summarized in Fig. 2. 179 

 180 

 181 

Clinical implications 182 
The identification of molecular mechanisms underlying TCE resistance provides valuable insights to 183 
guide future immunotherapy in multiple myeloma. Before treatment, molecular characterization of 184 
the target antigens in tumor cells and of the immune repertoire may help select the most 185 
appropriate immunotherapy for each patient. At relapse, understanding the molecular cause of 186 
resistance will be instrumental in choosing the next treatment line.  187 
 188 
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 5 

Molecular characterization of the targets to select the first immunotherapy line 189 
TCE resistance by loss of the target antigen requires the inactivation of the two copies of the gene. 190 
Pre-existing deletions or mutations of TCE targets may thus favor the emergence of resistance. A 191 
representative example is the talquetamab-resistant case published by Derrien et al. in which a pre-192 
existing 12p deletion (encompassing GPRC5D) allowed the emergence of 7 resistant subclones, each 193 
harboring a distinct second hit14. Similarly, Lee et al. described 3 patients harboring pre-treatment 194 
16p (encompassing TNFRSF17) or 12p deletions who developed subclones resistant to BCMA 195 
(respectively GPRC5D)-targeting TCE following acquisition of second hits13. Screening of target 196 
alterations in large cohorts of TCE treatment-naive MM revealed recurrent heterozygous deletions of 197 
TNFRSF17 (3-8%), GPRC5D (13-15%) or CD38 (10%)12,13,31,32. Of note, patients with 16p deletion 198 
(encompassing TNFRSF17) have increased deletion frequencies of other chromosomes and may be 199 
more vulnerable to the biallelic loss of other genes32. Altogether, heterozygous deletion of one target 200 
occurs in ~30% of MM. Other targets like FCRL5 and SLAMF7, located on chromosome arm 1q, are 201 
recurrently gained in RRMM. In addition to deletions, rare somatic mutations of GPRC5D were 202 
identified in TCE-naive MM12, as well as somatic (1.1%) and germline (0.7%) TNFRSF17 mutations, 203 
including a recurrent p.Pro33Ser germline variant notably encountered in a patient with primary 204 
refractory disease to anti-BCMA TCE13. Screening these events may improve TCE response by 205 
prioritizing target genes with two intact copies in MM cells, although the predictive value of 206 
monoallelic target alterations at baseline remains to be demonstrated in clinical series. In addition to 207 
their genomic status, the baseline expression of target antigens may influence TCE response. The two 208 
talquetamab-resistant cases with epigenetic GPRC5D silencing belonged to the t(11;14) molecular 209 
group14 that displays the lowest GPRC5D mRNA expression20. In vitro, the efficacy of talquetamab 210 
was superior in patient-derived MM cells with high GPRC5D expression. Whether a low baseline 211 
expression may facilitate acquired TCE resistance by epigenetic silencing of the target, e.g. by 212 
extension of inactive chromatin marks, will need to be examined in large clinical cohorts.  213 
 214 
Molecular profiling of the microenvironment 215 
The abundance of exhausted-like T cell clones was associated with TCE response failure, providing a 216 
rationale for immune monitoring before treatment6. This could be done by cytometry or single-cell 217 
RNA/VDJ-seq. The feasibility of integrating single-cell RNA-seq analyses in clinical trials was already 218 
demonstrated in MM8 and could allow monitoring the evolution of T cell clones as well as their 219 
phenotypic trajectories. Similarly investigation of the other bone marrow microenvironmental 220 
components, both soluble (cytokines) and cellular (Tregs, BMSC, MDSC, pDC) and their status may 221 
provide information about creating a permissive environment for optimal clinical activity of TCE. 222 
However, additional studies are required to establish straightforward measures and cut-offs on 223 
specific cell populations that could be used in clinical practice. 224 
 225 
Adjusting the sequence of immunotherapies in MM 226 
Resistance mechanisms also inform the strategy of immunotherapy sequencing in MM. To date, 227 
limited clinical data regarding TCE sequencing are available. In patients receiving anti-BCMA TCE as 228 
first subsequent therapy after talquetamab (n=19), the ORR was 57.9%, which is close to ORR in 229 
Majestec-1 or Magnetismm-3 studies33. In Monumental-1, patients receiving talquetamab as 230 
subsequent therapy after BCMA TCE (n=18), the ORR was 44.4%, in comparison with 71.7% in prior 231 
TCE  naïve patients (0.8 mg/kg cohort)10. Complete inactivation of a target, e.g. by homozygous 232 
deletion, likely precludes response to other immunotherapies targeting the same antigen. For 233 
example, in the case reported by Truger et al., bi-allelic loss of TNFRSF17 following BCMA-targeting 234 
TCE led to an absence of response to subsequent treatment with an anti-BCMA antibody-drug 235 
conjugate1. By contrast, mutations in the extracellular domain of BCMA can impair the binding of one 236 
TCE but not another13. Patients may thus benefit from sequential or combined TCE targeting 237 
different BCMA epitopes. TNFRSF17 mutations were less frequent in resistant MM after BCMA-238 
targeting CAR-T than BCMA-targeting TCE. This could be an argument for CAR-T usage in first 239 
immunotherapy line, especially with the advent of more efficient CAR platforms like T-Charge34. 240 
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 6 

More than half of the 14 relapses after BCMA-targeting TCE studied by Lee et al. did not involve 241 
TNFRSF17 genetic alterations13. Part of these cases are likely explained by tumor-extrinsic factors like 242 
T cell exhaustion19. Such mechanisms may also prevent response to subsequent TCE targeting other 243 
antigens. By contrast, all sequenced relapses after GPRC5D-targeting TCE were driven by genetic or 244 
epigenetic GPRC5D inactivation13,14, which should not impair the efficacy of immunotherapies 245 
targeting other antigens. Consistent with these predictions, immune and genome profiling of a few 246 
patients with sequential immunotherapies suggests that T cell exhaustion precludes response to 247 
subsequent immunotherapy lines whereas genetic inactivation of an antigen does not impair 248 
response to another immunotherapy targeting another antigen or epitope35. Importantly, the 249 
frequency of heterozygous deletions encompassing TCE target gene loci increases significantly 250 
between NDMM and RRMM12. Myeloma cells also contribute to create an immunosuppressive bone 251 
marrow by several means29,36–38. As a result, the immune microenvironment gets compromised 252 
during MM progression39, and RRMM display features of T cell exhaustion40. Both effects are likely to 253 
limit the efficacy of TCE in advanced disease and argue for their use in early treatment lines.  254 
 255 

 256 

Conclusion and future perspectives 257 
Other potential resistance mechanisms 258 
Both tumor-intrinsic and tumor-extrinsic resistance mechanisms of TCE resistance have been 259 
elucidated, but they were so far analyzed separately. Joint analyses of tumor and immune cell 260 
responses to TCE treatment will be useful to understand how tumor cells may influence T cell 261 
response, and to estimate the proportion of cases in which resistance remains unexplained. 262 
Interestingly, some post-TCE relapses displayed subclonal target inactivations affecting most but not 263 
all tumor cells13,14. Treatment escape in the remaining subclones may involve undetected target 264 
alterations (e.g. mutations in very small clones), or other resistance mechanisms yet to be 265 
characterized. Epigenetic inactivation was investigated for GPRC5D14 but not TNFRSF17. In addition, 266 
γ-secretase can shed BCMA protein from the cell surface and release soluble BCMA (sBCMA) into the 267 
blood41. An activation of this process may allow TCE escape through the removal of the target 268 
antigen from MM cells, and interference of the drug with sBCMA. High sBCMA levels were associated 269 
with increased tumor burden, extramedullary disease and lower response to anti-BCMA TCE11,42,43. In 270 
vitro, high sBCMA levels decreased the binding of anti-BCMA antibodies to MM cells44 and the 271 
efficacy of anti-BCMA CAR-T and TCE45. Interestingly, structural genomic rearrangements leading to 272 
the overexpression of BCMA and higher sBCMA levels were identified in MM after anti-BCMA CAR-T 273 
/ TCE treatment45. Finally, two studies reported down-modulation of  IFN-γ signaling as an acquired 274 
mechanism of resistance to HER2-targeting TCE in gastric and breast cell lines, conferring resistance 275 
to killing by active T lymphocytes46,47. Inhibition of IFN-γ signaling has not been reported so far in 276 
TCE- treated MM. 277 
 278 
Development of trispecific antibodies and drug combinations 279 
To limit target-related mechanisms of resistance, strategies using multitarget T-cell engagers are 280 
currently being investigated. One option is to combine bispecific antibodies. The phase 1b study 281 
RedirecTT-1 evaluated the combination of biweekly talquetamab and teclistamab in RRMM patients 282 
(median of 4 prior lines, 79.6% triple class refractory). The combination demonstrated high efficacy 283 
with an ORR of 86.6% including 40.2% complete response, and a median PFS of 20.9 months48. 284 
Another option for multitarget approach is the use of trispecific antibodies, targeting CD3 and 2 285 
distinct targets on plasma cells. A phase 1 study is currently evaluating a trispecific antibody targeting 286 
CD3xBCMAxGPRC5D in relapsed myeloma patients (NCT05652335). To limit tumor extrinsic 287 
mechanisms of resistance (i.e. T-cell exhaustion) several ongoing studies evaluate bispecific 288 
antibodies with IMiDs (i.e. lenalidomide, pomalidomide), anti CD38 antibodies (i.e daratumumab) or 289 
immune checkpoint inhibitors (i.e. cetrelimab) that have been shown to promote T-cell activity49,50. 290 
Initial efficacy and safety results of a talquetamab + pomalidomide combination were promising in 291 
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 7 

the MonumenTAL-2 study51. Phase 1b studies combining bispecific antibodies with anti-CD38 292 
monoclonal antibodies demonstrated promising response rates52,53. The ongoing phase 1-2 study 293 
TRIMM-3 evaluates efficacy and safety of teclistamab or talquetalab in combination with anti PD-1 294 
cetrelimab (NCT05338775).  Moreover, ongoing clinical trials evaluated the combination of 295 
BCMAxCD3 bispecific antibodies with gamma secretase inhibitors (GSI), to decrease soluble BMCA 296 
levels implicated in BCMA bispecific resistance (NCT04722146). Combination of TCE plus the GSI 297 
nirogacestat led to a promising response rate, but high-grade immune events were reported in the 298 
cohort with early administration of GSI during teclistamab priming doses54. Combining bispecific TCE 299 
with cyclophosphamide may also improve T-cell persistence and function, as demonstrated in 300 
preclinical models21. Altogether, combinations with various therapeutic classes holds great promise 301 
to improve the efficacy of TCE in myeloma, notably by limiting T cell exhaustion. 302 
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 313 

Table and Figure Legends 314 
Fig. 1: Spectrum of TNFRSF17 and GPRC5D mutations identified in post-TCE MM relapses. Somatic 315 
mutations identified in two studies13,14 are indicated on the protein structure. Extracellular, 316 
transmembrane and cytoplasmic domains are annotated with a color code. TNFRSF17 mutations 317 
define hostpots in the extracellular domain and impact a single amino acid. By contrast, GPRC5D 318 
mutations are truncating and distributed all along the protein sequence. 319 
 320 
Fig. 2: Tumor-intrinsic and -extrinsic mechanisms of TCE resistance in MM. Only resistance 321 
mechanisms evidenced in humans or preclinical models are represented. 322 
 323 
Table 1: Clinical impact of resistance mechanisms. Table 1 summarizes the molecular alterations 324 
associated with TCE resistance and their clinical impact. 325 
 326 
 327 
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Alteration Disease stage Frequency Detection 
technique* 

Clinical impact Reference(s)** 

16p loss 
(TNFRSF17) 

Pre-treatment 
screening 

3-4% of TCE-naive 
MM 

WGS May facilitate bi-allelic 
target inactivation by 
second hit 

1,2 

TNFRSF17 
mutation 

Pre-treatment 
screening 

1.1% (somatic) and 
0.7% (germline) of 
TCE-naive MM 

WGS May facilitate bi-allelic 
target inactivation by 
second hit 

2 

12p loss 
(GPRC5D) 

Pre-treatment 
screening 

13-15% of TCE-
naive MM 

WGS May facilitate bi-allelic 
target inactivation by 
second hit 

1,2,3 

GPRC5D 
mutation 

Pre-treatment 
screening 

4% TCE-naive MM WGS May facilitate bi-allelic 
target inactivation by 
second hit 

1 

Low GPRC5D 
expression 

Pre-treatment 
screening 

TBD RNA-seq Associated with reduced 
talquetamab efficacy in 
vitro. May facilitate 
epigenetic inactivation of 
the target 

3,4 

Abundance of 
exhausted T 
cell clones 

Pre-treatment 
screening 

TBD scRNA/VDJ-
seq 

Predicts response failure 
to BCMA-targeting TCE 

5 

TNFRSF17 
homozygous 
deletion 

At relapse 1/14 relapses post-
BCMA-targeting TCE 

WGS Precludes response to 
other BCMA-targeting 
therapy 

1,2 

TNFRSF17 
p.Arg27Pro  

At relapse 1/14 relapses post-
BCMA-targeting TCE 

WGS Confers resistance to 
teclistamab and 
elranatanab 

2 

TNFRSF17 
p.Pro34del 

At relapse 3/14 relapses post-
BCMA-targeting TCE 

WGS Confers resistance to 
teclistamab and 
elranatanab 

2 

TNFRSF17 
p.Ser30del 

At relapse 2/14 relapses post-
BCMA-targeting TCE 

WGS Confers resistance to 
teclistamab 

2 

Bi-allelic 
genetic 
GPRC5D 
inactivation 

At relapse 5/7 post-
talquetamab 
relapses 

WGS Likely precludes response 
to other GPRC5D-
targeting therapy 

2,3 

Epigenetic 
GPRC5D 
inactivation 

At relapse 2/3 post-
talquetamab 
relapses 

scMultiome 
(RNA-seq + 
ATAC-seq) 

Likely precludes response 
to other GPRC5D-
targeting therapy 

3 

 482 
* Indicated techniques are those used in the original references. 483 

** 1 Truger et al., Blood Adv 2021; 2 Lee et al., Nat Med 2023; 3 Derrien et al., Nat Cancer 2023; 4 Verkleij et al. Blood Adv 484 
2021; 5 Friedrich et al., Cancer Cell 2023. 485 

TBD: To be determined; WGS: whole genome sequencing. 486 
 487 
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