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Abstract: In this MECOM-associated syndrome cohort, we describe a notable prevalence of 

somatic genetic rescue events and clonal hematopoiesis in carriers. We also observe a higher 

rate of pregnancy loss than the general population.  
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Pathogenic germline heterozygous variants in MECOM (MDS1 and EVI1 complex locus) are 

associated with an autosomal dominant bone marrow failure (BMF) disorder characterized by 

radioulnar synostosis (RUS) often accompanied by amegakaryocytic thrombocytopenia 

(RUSAT2; MIM#616738). MECOM is a transcription factor which is essential for 

hematopoietic stem cell self-renewal, and the loss of MECOM decreases absolute long term 

hematopoietic stem cell numbers
1
. Several differentially spliced transcripts are encoded by 

the MECOM locus resulting in MDS1, MDS1-EVI1 and EVI1 isoforms. It has been 

demonstrated that these isoforms are involved in their own transcriptional regulation through 

distinct promoter regions and have an impact on the maintenance and transformation of 

hematopoietic stem and progenitor cell populations
2
.  

Individuals with MECOM-associated syndrome display variable clinical presentations 

ranging from no hematological manifestations to severe BMF with or without skeletal 

abnormalities
1,3

 
3
. Other features include clinodactyly, cardiac and renal malformations, 

hearing loss and B cell deficiency. Most individuals eventually progress to pancytopenia and 

require hematopoietic stem cell transplants at relatively young ages
3–5

 . Skeletal abnormalities 

particularly RUS are seen predominantly in individuals with missense variants within the 

eighth and ninth zinc finger motifs of MECOM
4,6,7

 . However, there are reports of affected 

individuals with premature termination variants or constitutional deletions with skeletal 

involvement
8,9

.  

Here we report fifteen (3 families, 5 de novo) cases of MECOM-associated syndrome with 

onset of symptoms varying from in utero to late adulthood (Figure 1A-F). Our cohort 

represents the spectrum of this syndrome with individuals presenting with a) classical 

RUSAT, b) BMF (ranging from mild to severe) without RUS, c) RUS without hematological 

manifestations. Detailed information on clinical history and classification of germline 

MECOM variants as per the American College of Medical Genetics (ACMG) guidelines are 

included in Supplemental Information, Table 1 and Supplemental Table 1. 

Herein we show that part of the variability in hematological presentation may be attributable 

to spontaneous reversion of germline variants observed in some affected individuals. Our 

study identifies 7/15 affected individuals who show spontaneous resolution, alleviation of 

hematological symptoms, or late onset of hematological manifestation of MECOM-

associated syndrome. For 4/6 individuals (3-II-4, 4-II-4, 5-II-1 and Patient 11), amelioration 

of symptoms appears associated with somatic genetic rescue, in the form of copy neutral loss 

of heterozygosity of chromosome 3q encompassing MECOM (Figure 1H, Supplemental 

Figure 2, 3, 4, Supplemental Information) thereby duplicating the residual wildtype allele in 

an expanding clone. A chromosomal rearrangement involving the MECOM locus was 

detected by FISH in a small subset of cells in 7-II-1. However, the consequence of this event 

at the cell differentiation/fitness level remains to be established. For 2/6 individuals, an 

explanation for mild presentation or symptom resolution remains enigmatic: 2-II-6 displayed 

spontaneous resolution of hematopoietic symptoms while 4-II-1 has been free of 

hematological symptoms for most of her life. Longitudinal analysis of variant allele fractions 

in both these individuals showed no evidence of allelic imbalance (Supplemental Figure 5,6). 

Somatic genetic rescue has been reported in several genetic diseases including skin disorders 
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(e.g. Ichthyosis with Confetti
10

, Epidermolysis bullosa
11

) and BMF syndromes (e.g. Fanconi 

Anemia
12

, Diamond Blackfan Anemia
13

, Wiskott Aldrich Syndrome
14

, Dyskeratosis 

Congenita
15

); with only one report in MECOM-associated syndrome
16

. Spontaneous 

normalization of blood counts and absent/mild hematopoietic involvement in carriers have 

been described in the literature; however there has been limited information/follow-up as to 

the mechanism
3,6,17,18

 .  

Most reported MECOM cases have had allogeneic bone marrow transplants at relatively 

young ages, which could explain relatively low frequency of  progression to myeloid 

malignancy in 5% of patients (3 adult MDS cases, 1 pediatric AML out of 80 

individuals
19

)
3,5,9

. The findings of aplasia with dysplastic features in 1-II-5 and MDS in 5-II-1 

add two more cases of myeloid dysplasia in MECOM-associated syndrome. Notably, all three 

older individuals within our cohort (4-II-1, 4-II-4, 5-II-1) displayed somatic variants in 

known age-related clonal hematopoiesis genes (Supplemental Figure 7). Acquisition of 

somatic variants in genes such as ASXL1, DNMT3A and TET2 have been linked with 

improved HSC fitness and self-renewal
20

. Both 3-II-4 and 4-II-4 also had transient 20q loss 

events (a common karyotypic abnormality observed in myeloid disorders and aging 

population
21

) in their surveillance marrows. Intriguingly, 4-II-1 and 5-II-1 also have somatic 

ETV6 variants which is not usually reported in an age-related context. Though the presence of 

such somatic alterations likely improves hematopoietic output, it may also signify an elevated 

risk of myeloid malignancy development particularly with advancing age. Consistent with 

this, in addition to clonal haematopoiesis, 4-II-4 is beginning to exhibit dysplastic features in 

more than one lineage (Supplemental Figure 2). 

In the dynamic hematopoietic environment, demand-adapted hematopoiesis can drive 

mosaicism down two roads: clonal evolution through the acquisition of deleterious variants 

leading to cancer or alternatively, revertant mosaicism resulting in partial/complete rescue of 

phenotype. Somatic genetic rescue is an important factor to consider in scenarios such as 

carriers with mild phenotype, selection of tissue sources for identification of causative lesion 

in individuals in remission and use of patient-derived cell lines for drug screening. 

Understanding the mechanisms of revertant clonal selection in vivo and in vitro will open 

windows for rational correction and selection protocols for effective therapeutic intervention 

in inherited BMF disorders such as MECOM-associated syndrome.  

Strikingly, there were 12 pregnancy losses out of a total of 16 pregnancies in 5 mothers 

where detailed information regarding pregnancies was available (Supplemental Table 2) 

within our cohort. This is a higher rate of loss (75%) than expected pregnancy outcomes in 

the general population (15-25%) as well as other inherited BMF syndromes (12-20%)
22,23

. 

We observed recurrent pregnancy losses (including late losses) in 1-I-2, 4-II-1 and 5-II-1, all 

of whom are carriers of MECOM variants (Figure 1). 4-I-2, who tested negative for the 

MECOM variant and whose husband (4-I-1) displayed MECOM-associated phenotype, 

experienced stillbirth at 8.5 months of gestation (4-II-3) raising the possibility that pregnancy 

loss can also occur from MECOM-associated complications intrinsic to the developing fetus. 

Her remaining three children displayed symptoms of MECOM-associated syndrome with two 

testing positive for the variant while the third could not be assessed due to unavailability of 
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samples.  However, we were unable to ascertain the MECOM status for the fetus. It is also 

worth noting that 2-I-2 and 3-I-2 (both wildtype for MECOM) have also experienced 

pregnancy losses. We cannot comment on whether one or more individuals are gonadal 

mosaics for the MECOM variants as we are unable to determine the MECOM status of the 

fetuses due to unavailability of material for genetic testing.  

Cardiac and vascular abnormalities including atrial septal defect, ventricular septal defect and 

patent ductus arteriosis have been reported in MECOM-associated syndrome. However, there 

has only been one report each of aortic coarcatation and aortic root dilatation
3,24

. We have 

observed three cases of aortic dilatation with one progressing to an aortic aneurysm reaching 

the threshold for surgical correction in our cohort of 15 cases. 

Overall, this report adds to the breadth of disease presentations in MECOM-associated 

syndrome and expands age of onset varying from in utero to late adulthood with at least one 

individual being in relatively good health well into their sixties. It is becoming increasingly 

clear that the complex disease presentations of MECOM-associated syndrome are primarily 

driven by genomic location and nature of the germline variants, and further complicated by 

mechanisms such as somatic genetic rescue and possibly also somatic compensation by other 

genes. The clinical presentation and threshold of somatic genetic rescue required for 

phenotypic improvement/reversion is likely dictated by how severe the impact on protein 

function/output is, in each affected individual. The prevalence of somatic genetic rescue 

provides a rationale for gene-corrected autologous transplantation or direct gene editing 

approaches as potential treatments for the hematopoietic phenotype of MECOM-associated 

syndrome in the absence of matched donors. The presence of CHIP in the older individuals 

and the finding of additional cases of myeloid dysplasia in our cohort warrant consideration 

of surveillance particularly in older carriers. Given the high rate of pregnancy losses in these 

families, they should be considered for counselling for reproductive planning and 

employment of preimplantation genetic diagnosis to reduce the risk of future pregnancy 

losses. Moreover, the variability of presentation can make accurate genetic diagnosis 

challenging, and the notable prevalence of somatic genetic rescue reiterates the importance of 

using DNA from non-hematopoietic tissue such as hair follicles or skin fibroblasts for genetic 

testing. 

Clinical and genomics data from germline MECOM variant carriers were collected from 

Centre for Cancer Biology (Australia), Peter MacCallum Cancer Centre (Australia), Radboud 

University Medical Center (Netherlands). All procedures in this study involving human 

participants were performed in accordance with the Declaration of Helsinki. Studies were 

approved by institutional human research ethics committees and/or institutional research 

boards. All participants signed an informed consent form to share genomics and protected 

health information. 
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Figure Legends 

Figure 1. Pedigrees, phenotypes and genotypes of families and individuals carrying rare 

germline MECOM variants. A-F. Pedigrees with germline MECOM variants. Affected 

individuals (grey), MECOM mutation carriers (+), MECOM WT (-). G. X-ray images from 3-

II-4 demonstrating radioulnar synostosis and absent patella. H. Copy neutral loss of 

heterozygosity in 3-II-4 across chromosome 3q encompassing the MECOM germline variant 

and leading to somatic genetic rescue. I. Distribution of germline MECOM variants 

(NM_004991.4) visualized using ProteinPaint web application. Aplastic anemia (AA), fetal 

death in utero (FDIU), Spontaneous Abortion (SAB), termination of pregnancy (TOP), 

ectopic pregnancy (ECT). 

Table 1. Genotypes and phenotypes of affected individuals carrying rare germline 

MECOM variants.  
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Table 1. Genotypes and phenotypes of affected individuals carrying rare germline MECOM variants.   

Patien
t 

ID 

cDNA 
(NM_004991

.4) 

Protein 
(NP_004982.2) 

Sex Age at 
prese
ntatio

n 

HSCT 
(Age) 

Somatic 
Genetic 
Rescue 

Additional Somatic 
genetic changes 

Hematopoietic 
abnormalities 

(age at diagnosis) 

Skeletal 
abnormalities 

Cardiac/ 
vascular 

abnormalities 

Other 
abnormalities 

1-I-2 c.2577+4A>
T 

p.(Arg830Serfs*21
) 

p.(Val831Cysfs*11
) 

F 15 y Haploident
ical HSCT 

(36y) 

not 
detected 

none detected Pancytopenia and anemia 
(15 y). 

Short stature, 
Brachydactyly, Short 

toe, proximal 
placement of hallux, 

short proximal phalanx 
of hallux, short 

proximal phalanx of 5th 
finger and 

cholelithiasis. 

Ventricular 
septal defect 

  

1-II-5 c.2577+4A>
T 

p.(Arg830Serfs*21
) 

p.(Val831Cysfs*11
) 

F in 
utero 

NA N not analysed Aplasia with dysplastic 
features (in utero). 

Preaxial polydactyly, 
supernumerary ribs 

and coronal cleft 
vertebrae. 

none reported Fetal Hydrops 
Splenic hemosiderin 

deposition 
Small placenta 

2-II-6 c. 1174delT p.(Cys392Alafs*29
) 

F 9 mo N not 
detected 

none detected • Thrombocytopenia and 
transient low relative B cell 
numbers (9 months). 
• Hypocellular bone marrow 
with complete absence of 
megakaryocytes, 
dyserythropoiesis and left 
shifted granulopoiesis with 
abnormal granulation.  
• Spontaneous recovery (3 
y). 

not present Mild aortic root 
dilatation 

Congenital hearing 
loss 

3-II-4 c.2873_2875
delTTA  

 p.(Phe958_Ser95
9del 

insCys) 

M Birth N cnLOH 
chr3q 

transient del(20q) • Neonatal thrombocytopenia 
managed with multiple 
platelet transfusions followed 
by spontaneous recovery.  
• Subsequent mild 
pancytopenia and 
hypocellular bone marrow. 

Proximal radioulnar 
synostosis, hypoplastic 
thumbs, short, broad 

fingers, short 5th digits 
and coalition of right 
capitate and hamate 
and bilateral absent 

patellae. 

Mild mitral 
valve prolapse 

  

4-II-4 c.816dupT p.(Pro273Serfs*2) M Birth N cnLOH 
chr3q 

transient del(20q) 
ASXL1  

p.(Arg860Glufs*7) 
ASXL1 p.(Leu775*) 

• Pancytopenia  
• Aplastic anaemia (11 y). 

Club foot, small 
patellae. 

Aortic root 
dilatation 

progressing to 
aortic 

aneurysm, 
Mitral valve 

defect 
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4-II-1 c.816dupT p.(Pro273Serfs*2) F 59 y N not 
detected 

DNMT3A 
p.(Leu504Trpfs*147) 

ETV6 
p.(Ser139Tyrfs*14) 
TET2 p.(Cys973*) 

TP53 p.(Ala276Asp) 

• Mild intermittent 
thrombocytopenia and 
neutropenia  
• Hypocellular bone marrow. 

Small patellae. Aortic root 
dilatation 

Bicornuate uterus, 
mild sensorineural 

hearing loss, 
cataract (50 y), 

bilateral scarring of 
kidneys with normal 

function 

5-II-1 c.2889C>G p.(Asn963Lys) F childh
ood 

(exact 
age 

unkno
wn) 

N cnLOH 
chr3q 

ASXL1 
p.(Gly646Trpfs*12) 

SETBP1 
p.(Ser869Asn) 

EZH2 p.(Tyr733Phe) 
EZH2 

p.(Cys609_Ser610d
elinsTyr) 

ETV6 p.(Arg369Trp) 

• Aplastic anemia in 
childhood.  
• Diagnosed with 
myelodysplastic syndrome 
(40 y).  

Clinodactyly in fingers 
and toes. 

none reported Hearing impairment, 
locally recurrent 

anal squamous cell 
carcinoma,gynaeolo

gical warts. 
cataracts, glaucoma 

6-I-1 c.2905C>T  p.(Arg969Cys) M 4 y N not 
detected 

not analysed No abnormalities Bilateral radioulnar 
synostosis - surgically 

corrected at age 4 

none reported   

6-II-1 c.2905C>T  p.(Arg969Cys) M 2 y  N not 
detected 

not analysed No abnormalities Bilateral radioulnar 
synostosis, clubfeet 

Small patent 
ductus 

arteriosus/pate
nt foramen 

ovale, 
hemodynamic

ally not 
significant. 

Slightly cupped ears 
borderline normal 

hearing 

Patien
t 7 

c.2813G>A p.(Arg938Gln) M 34 y N Y none detected • Thrombocytopenia 
diagnosed at birth  
• Mild thrombocytopenia and 
macrocytosis without anemia 
(33y).  

Presumed bilateral 
radioulnar synostosis 

(limited ability to 
pronotate arms 

bilaterally), bilateral 
club foot, perthes-like 

hip disease, 
endochondromata and 

ecchondromata 

none Small kidneys 
without structural 

deficits, non-specific 
punctate foci of 

T2/FLAIR 
hyperintensity in the 
peripheral/subcortic

al white matter 
slightly greater than 

expected for 
patient's age 

Patien
t 8 

c.2776T>C p.(Cys926Arg) F 27 y N not 
detected 

not analysed Severe thrombocytopenia 
and mild leukopenia 

Clinodactyly of the 
thumb, short toe, 

unfused vertebral arch 
L5, coxa valga and 

cam deformity 

none reported   

Patien
t 9 

c.3106C>T p.(Arg1036*) M 19 y N not 
detected 

not analysed Thrombocytopenia Marfanoid habitus  
tall spindy fingers 

hypoplasic thumbs 
adducted toes 

none reported   
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Patien
t 10 

c.1696G>T  p.(Glu566*) F Birth  MUD (11 
mo) 

not 
detected 

not analysed • Thrombocytopenia 
diagnosed at birth 
• Progressive pancytopenia 
(9 mo) 
• Profoundly hypocellular 
marrow (9 mo)  

Retrognathia Patent 
foramen ovale, 

pulmonary 
branch 

stenosis 
(resolved 
without 

intervention at 
2 y) 

Congenital 
conductive hearing 
loss both ears, cleft 
palate (corrected at 

7 mo) 

Patien
t 11 

c.2813G>A p.(Arg938Gln) F 17 y N Y not analysed • Mild leukopenia and 
thrombocytopenia 
• Hypocellular marrow with 
absence of megakaryocytes 

Right-sided radioulnar 
synostosis, 

camptodactyly of the 
5th fingers, 

brachydactyly of the 
first toes, scoliosis 

Bicuspid aortic 
valve 

Congenital mixed 
hearing loss, 

bilateral relatively 
small kidneys 

without structural 
defects, from age 

18 onwards chronic 
mild renal 

insufficiency (stage 
2) 

Patien
t 12 

Complete 
loss of  

MECOM 
gene 

  F in 
utero 

N N not analysed Hypocellular bone marrow Micrognathia At autopsy: 
ductus 

arteriosus type 
II with VSD.  
Pericardial 

fluid,  
ascites. 

generalised edema 
 hygroma colli 

nuchal translucency 
cleft palate,  
simple ears  

Lung hypoplasia 
due to pleural fluid.  

Unilateral renal 
agenesis. 

MUD – matched 
unrelated donor 
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