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 41 

Vasoocclusive pain episodes (VOE) are the clinical hallmark of sickle cell disease (SCD) and a 42 

leading cause of morbidity and mortality.
1
 Therapies targeting underlying mechanisms of pain are 43 

lacking, which renders opioid analgesics the current standard-of-care. Multiple controlled trials in both 44 

the United States and sub-Saharan Africa support the safety and efficacy of arginine therapy in children 45 

with SCD-VOE.
2-6

 Arginine is the obligate substrate for the production of nitric oxide (NO), a potent 46 

vasodilator that is low in SCD-VOE and contributes to vasoocclusive complications.
3,7

 Mechanistically, 47 

arginine supplementation increases NO metabolites (NOx),
8,9

 improves mitochondrial function, and 48 

decreases oxidative stress.
10

 Clinically it improves cardiopulmonary function,
4
 decreases pain, and has 49 

opioid-sparing effects in children with SCD.
2,3

  50 

Arginine is also the precursor for kyotorphin, an endogenous opioid-like analgesic first described 51 

1979 in Kyoto, Japan,
11

 produced from its amino acids precursors L-arginine and L-tyrosine by the 52 

action of the enzyme kyotorphin synthetase.
12,13

 Kyotorphin exerts its analgesic effects indirectly by 53 

inducing met-enkephalin and β-endorphin that bind µ and/or δ- opioid receptors.
7,9

 Oral administration 54 

of arginine (1g/kg) in wild-type mice increased kyotorphin levels in the midbrain and medulla where 55 

sites of morphine analgesia are located.
12

 Subcutaneous administration of arginine inhibited carrageenin-56 

induced hyperalgesia in a rat and mouse model, an effect that was reversed by naloxone (a δ -opioid 57 

inhibitor).
14

 In addition, intracerebroventricular administration of arginine produced anti-nociception in 58 

intact mice after mechano- and thermo-nociceptive tests.
14,15

 Furthermore, clinical studies have shown 59 
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persistent analgesia reversible by naloxone in chronic pain patients treated with intravenous arginine.
16,17

 60 

While kyotorphin has not been previously evaluated in SCD, these studies suggest a functional link 61 

between kyotorphin, arginine and met-enkephalin/β-endorphin in suppressing pain.  Prior kyotorphin 62 

studies focused on chronic pain, however no studies to date have explored the arginine-kyotorphin 63 

relationship in acute pain.  64 

SCD-VOE represents an acute pain model characterized by arginine deficiency.
7
 Hemolysis 65 

plays a key role in arginine dysregulation;
7,18

 release of erythrocyte-arginase, an arginine-metabolizing 66 

enzyme that competes with NO synthase for its obligate substrate L-arginine, hydrolyzes arginine to 67 

form ornithine and urea, while diverting away from NO production.
18,19

 Low levels of the kyotorphin-68 

precursor tyrosine have also been reported in SCD during VOE.
20

  However, the relationship between 69 

arginine bioavailability and kyotorphin levels in SCD and pain is unknown. Our objective was to 70 

evaluate the impact of intravenous arginine therapy on plasma arginine, NOx and kyotorphin 71 

concentrations in children hospitalized with SCD-VOE. 72 

We conducted a single center, IRB-approved, prospective, randomized, open-label 73 

pharmacokinetics(pK)/pharmacodynamics(PD) study of intravenous arginine at a children’s hospital in 74 

Atlanta, GA (clincialtrials.gov #NCT02447874; IND#66,943) to assess the impact of arginine therapy 75 

on plasma arginine and NOx concentrations over time. Kyotorphin assessment was a post-hoc analysis. 76 

Patients with SCD (Hb-SS or S
0
-thalassemia) aged 7-21 years hospitalized for VOE requiring 77 

parenteral opioids were eligible. Written informed consent, and assent when appropriate, was obtained 78 

from all participants. Exclusion criteria included hemoglobin<5 gm/dL, hepatic/renal dysfunction, acute 79 

stroke, allergy to arginine, pregnancy, emergency department discharge, hospital discharge within the 80 

past 7 days, or previous enrollment into the study. 81 
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The research pharmacist performed blocked randomization using lists prepared by the 82 

biostatistician to randomize patients into one of three intravenous arginine dosing arms: 1) 100mg/kg 83 

every 8 hours (standard dose, n=4); 2) loading dose (200mg/kg) followed by standard dose (n=5); or 3) 84 

loading dose (200mg/kg) followed by continuous infusion (300mg/kg/day) (n=4). Arginine was 85 

administered over 30 minutes per manufacturer’s recommendation (R-Gene10, Pfizer). Blood was 86 

obtained at 6 time points: Pre-infusion (time 0), and at 1, 1.5, 2, 4 and 8 hours after the initiation of the 87 

first arginine infusion, then at approximately 8AM daily until discharge or for 7 days, whichever came 88 

first. Plasma arginine, kyotorphin, and NOx levels were measured through previously described 89 

methods.
7,18

 pK/PD analyses were performed, including determination of arginine Cmax, Tmax, area 90 

under the curve (AUC, calculated using the trapezoid rule), rate of clearance and half-life. Numeric pain 91 

scores were extracted from the electronic medical records.  Daily highest/worst, lowest and mean pain 92 

scores were assessed for correlations with peak kyotorphin concentration, arginine Cmax, change in 93 

arginine concentration from baseline to discharge (M) and peak NOx.  Mean±SD, paired t-tests and 94 

Pearson correlation analyses between groups were performed where appropriate, using Prism-v9.5.1. 95 

Sixteen patients were consented, and 13 patients were randomized. Three patients were 96 

excluded, one for elevated creatinine and two for emergency department discharge. Participant 97 

demographics, clinical characteristics, and laboratory values at initial presentation (pre-dose) are 98 

summarized in Table 1. While no statistically significant differences between randomized study arms 99 

were identified, subjects randomized to the standard dose arm (100mg/kg intravenously every 8 hours) 100 

trended younger in age, had clinically relevant lower hemoglobin levels and blood biomarkers 101 

suggesting an increased hemolytic rate that could impact arginine bioavailability. Plasma arginine and 102 

kyotorphin levels (Fig1) were significantly higher after arginine infusion, peaking at 1 hour, with no 103 

significant differences in peak concentration across study arms. Pharmacokinetics parameters are 104 
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summarized in Supplement-Table1. Mean plasma arginine peak for all subjects was 331.6±95.4 M, 30 105 

minutes after infusion completion (Tmax). All but one subject achieved peak plasma arginine levels 106 

above the Km (100-150 M) of the cationic amino acid transporter (CAT-1) after arginine infusion. The 107 

AUC was highest in the loading dose+continuous infusion arm. Kyotorphin levels strongly correlated to 108 

plasma arginine concentration (r=0.72, p<0.0001; Fig2). Arginine and kyotorphin levels over time 109 

broken down by study arm are illustrated in Supplement-Fig1. Plasma NOx also significantly increased 110 

from pre-dose to Tmax (within 1-2 hours; mean absolute change 12.1±16.2 µM, p=0.02; Supplement-111 

Fig2), returning to baseline by 8 hours.  While NOx increased primarily in those receiving an arginine-112 

loading dose, no correlation was found between arginine and NOx concentration nor with arginine Cmax 113 

and peak NOx levels or mean change/% change in NOx. No significant changes in the kyotorphin-114 

precursor tyrosine were observed (Supplement-Fig3).  Significant inverse correlations were identified 115 

between daily pain scores and change in plasma arginine concentration (M) from baseline to discharge 116 

and peak Day1-kyotorphin levels when the arginine-loading dose arms were combined (Supplement-117 

Table2). Onalo and colleagues also reported significant difference in worst pain scores after oral 118 

arginine versus placebo.
2
 Non-significant inverse correlations between daily pain scores and Day1 peak 119 

kyotorphin, arginine Cmax and peak NOx levels for all subjects were also noted (data not shown).  120 

This is the first report of an acute increase in plasma concentration of the opioid-like analgesic 121 

kyotorphin in patients with SCD-VOE following an intravenous arginine infusion. Kyotorphin 122 

concentrations remained elevated for 2 hours before returning toward the pre-dose baseline level by 4 123 

hours, strongly correlating to arginine concentration. Low arginine bioavailability is associated with 124 

SCD mortality and morbidity,
18

 including acute pain severity.
2,3,7

 Multiple phase-2 trials support the 125 

safety and efficacy of arginine therapy in children with SCD-VOE,
2-6

 while marked analgesia has been 126 

reported in non-SCD patients with various forms of pain 30-40 minutes after intravenous arginine 127 
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compared to placebo, with a dose-dependent effect that lasted 6-24 hours.
16,17

 As the obligate substrate 128 

for NO production, arginine’s mechanism-of-action is unknown but thought to be related in-part to NO 129 

production. However, arginine is likely the rate-limiting amino acid for kyotorphin production,
11,13

 130 

potentially contributing to the efficacy of arginine therapy on pain reduction.
2,3,16

 In particular, the 131 

opioid-sparing effect of arginine supplementation is not fully understood in SCD; induction of an 132 

endogenous opioid-like dipeptide like kyotorphin represents a potential mechanism of analgesia that 133 

would decrease opioid utilization during VOE. Although our study is limited by its small sample size, 134 

lack of control arm and single-center enrollment, it is a pK study meant to identify dose-dependent 135 

effects of arginine therapy and potential mechanisms-of-action, leading to a larger controlled trial in 136 

SCD-VOE.
22

 137 

  This study demonstrated that intravenous arginine rapidly increased plasma arginine 138 

concentration 2-5 times above baseline at presentation for VOE, reaching a maximum concentration 139 

within 1 hour of infusion initiation regardless of study-dose administered. While there was inter-subject 140 

variability in peak arginine levels achieved, the loading dose, which was double the standard dose, 141 

interestingly did not result in a significantly higher Cmax. However, prior studies have demonstrated a 142 

dose-dependent impact of arginine on NOx production,
9
 mitochondrial function and oxidative stress.

10
 In 143 

addition, we previously demonstrated that a significantly lower peak arginine concentration was 144 

achieved in children with SCD at the onset of their acute VOE compared to levels achieved with the 145 

same arginine dose given at steady state.
9
 While greater renal excretion or elevated metabolism of 146 

arginine are potential explanations not evaluated in this study, this observation may potentially reflect 147 

higher arginine intracellular transport in the loading dose arms, ultimately leading to changes in 148 

pharmacodynamic outcomes like mitochondrial function and oxidative stress that favor utilization of 149 

higher doses.
10

 Kyotorphin levels strongly correlated to arginine concentration, and rapidly peaked 150 
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within one hour of arginine infusion initiation. While there were no significant changes in plasma 151 

tyrosine concentration after arginine infusion, we also found no significant difference in peak kyotorphin 152 

levels with our loading (200mg/kg) compared to standard dose (100mg/kg). However, since the AUC 153 

was greatest in the loading/continuous infusion group, a larger sample size might reveal a dose-154 

dependent response. It is also possible that administration of higher doses of intravenous arginine may 155 

have a greater impact on kyotorphin production and ultimately pain relief. Given the excellent safety 156 

profile of arginine,
6
 and practices utilizing up to 500mg/kg for urea cycle disorders and 157 

hyperammonemia,
23

 mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes 158 

(MELAS),
24

 and growth hormone stimulation testing,
6
 studies evaluating higher doses for SCD-VOE are 159 

indicated to potentially maximize pain management, particularly in the acute care setting. 160 

Similar to previous reports,
7,8,25

 arginine supplementation in this cohort significantly increased 161 

plasma NOx levels, supporting a role for vasodilation as an additional potential mechanism-of-action 162 

during SCD-VOE.  Finally, hemolysis depletes tetrahydrobiopterin (BH4),
21

 an essential cofactor for 163 

both tyrosine synthesis and NO production from arginine. BH4 converts phenylalanine into tyrosine and 164 

is also a cofactor for NO synthase in the production of NO from arginine. Since BH4 is unstable, it 165 

becomes non-enzymatically oxidized to dihydrobiopterin (BH2) under oxidative stress,
21

 disrupting both 166 

metabolic pathways and compromising tyrosine synthesis and NO production. In malaria, BH4 is 167 

oxidized to BH2, which contributes to endothelial dysfunction.
21

 Particularly relevant to SCD, BH4 168 

activity warrants further study as it could disrupt both metabolic pathways, compromising tyrosine 169 

synthesis and NO production, adversely impacting kyotorphin production and potentially contributing to 170 

pain. 171 

 Our findings highlight a novel mechanism-of-action for arginine therapy in SCD-VOE that 172 

requires further research. While a phase-3 randomized controlled trial of intravenous arginine for 173 

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2023012209/2219489/bloodadvances.2023012209.pdf by guest on 07 M

ay 2024



8 
 

children and young adults with SCD-VOE is currently underway,
22

 our kyotorphin-related observation 174 

has significant implications for the potential use of arginine as an opioid-sparing therapy in pain 175 

syndromes beyond SCD.  176 

 177 
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Figure Legends 

 

Figure 1. Impact of intravenous arginine therapy on plasma A. Arginine and B. 

Kyotorphin concentrations (μM) over 8 hours and daily. Both plasma arginine and 

kyotorphin levels peaked within 30 minutes of completion of the intravenous arginine infusion 

that was delivered over 30 minutes. Pooled data from the three dosing arms is represented, as 

there was no significant difference in peak concentration across study arms. For the 8-hour 

pharmacokinetics study, plasma arginine concentration troughs by 4 hours but remains 

significantly above baseline through 8 hours (p=0.01) and day 2 (p=0.01). Plasma kyotorphin 

levels were significantly elevated between 1-2 hours (p=0.004), before dropping towards 

baseline. Morning blood draws occurred at approximately 8AM daily, greater than 6 hours from 

the last arginine infusion, representing a trough for plasma arginine and kyotorphin levels. 

Subjects available for daily blood analysis varied based on clinical resolution of their 

vasoocclusive pain and discharge day, with 11 subjects analyzed on day 2, 7 subjects on day 3, 6 

subjects on day 4, 4 subjects on day 5, and 3 subjects on day 6.  

 

Figure 2. Pearson correlation between plasma arginine and kyotorphin levels (μM) for all 

available timepoint values.  A strong correlation exists between plasma arginine and plasma 

kyotorphin concentration (r=0.72, p<0.0001). When an outlier timepoint with a peak kyotorphin 

level of 5.0M was excluded from the analysis, the correlation was even stronger (r=0.77, 

p<0.0001). Filled circles represent data at 1,1.5, and 2 hours after initiation of arginine infusion, 

reflective of the significant acute increase in plasma kyotorphin levels. Unfilled circles represent 

Time 0 (pre-dose), 4 and 8 hours after initiation of arginine infusion and daily values for patients 

remaining in the hospital.  
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Figure 1 

Day 1: n=13 

Day 2: n=11 

Day 3: n=7 

Day 4: n=6 

Day 5: n=4 

Day 6: n=3 D
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Figure 2 
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