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Abstract:
Mycosis fungoides (MF) is the most prevalent primary cutaneous T-cell lymphoma, with an indolent or
aggressive course and poor survival. The pathogenesis of MF remains unclear, and prognostic factors
in the early stages are not well-established. Here, we characterized the most recurrent genomic
alterations using whole-exome sequencing of 67 samples from 48 patients from Lille University
Hospital (France), including 18 sequential samples drawn across stages of the malignancy. Genomic
data were analyzed on the Broad Institute's Terra bioinformatics platform. We found that gain7q,
gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), or mutations in JUNB and TET2 are associated
with high-risk disease stages. Furthermore, gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22
(ZEB1), and del6q16.3 (TNFAIP3) are coupled with shorter survival. Del6q16.3 (TNFAIP3) was a risk
factor for progression in low-risk patients. By analyzing the clonal heterogeneity and the clonal
evolution of the cohort, we defined different phylogenetic pathways of the disease with acquisition
of JUNB, gain10p15.1 (IL2RA and IL15RA), or del12p13.1 (CDKN1B) at progression. These results
establish the genomics and clonality of MF and identify potential patients at risk of progression,
independent of their clinical stage.
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Key points: 

 Genomic analysis of mycosis fungoides identifies alterations associated high risk of 

progression and shorter overall survival. 

 Clonal evolution of mycosis fungoides shows acquisition of JUNB, gain of 10p15.1 

(IL2RA/IL15RA) or del12p13.1 (CDKN1B) at progression. 

Abstract 

Mycosis fungoides (MF) is the most prevalent primary cutaneous T-cell lymphoma, with an 

indolent or aggressive course and poor survival. The pathogenesis of MF remains unclear, and 

prognostic factors in the early stages are not well-established. Here, we characterized the most 

recurrent genomic alterations using whole-exome sequencing of 67 samples from 48 patients 

from Lille University Hospital (France), including 18 sequential samples drawn across stages 

of the malignancy. Genomic data were analyzed on the Broad Institute’s Terra bioinformatics 

platform. We found that gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), or 

mutations in JUNB and TET2 are associated with high-risk disease stages. Furthermore, 

gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), and del6q16.3 (TNFAIP3) 

are coupled with shorter survival. Del6q16.3 (TNFAIP3) was a risk factor for progression in 

low-risk patients. By analyzing the clonal heterogeneity and the clonal evolution of the 

cohort, we defined different phylogenetic pathways of the disease with acquisition of JUNB, 

gain10p15.1 (IL2RA and IL15RA), or del12p13.1 (CDKN1B) at progression. These results 

establish the genomics and clonality of MF and identify potential patients at risk of 

progression, independent of their clinical stage. 
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Introduction 

Primary cutaneous T-cell lymphoma (CTCL) is a clinically heterogeneous group of incurable 

extranodal lymphomas that target skin-resident mature T-cells. Mycosis fungoides (MF) is the 

most common CTCL, accounting for over 50% of all cases
1
. It typically exhibits an indolent 

disease course with slow progression over several years, and patients present with a wide 

range of clinical symptoms and disease outcomes
2
. In the early stages, MF generally 

manifests as erythematous macules and plaques, which are non-specific lesions that are 

difficult to diagnose. Patients may progress from low-risk (LR) clinical stages (TNMB IA to 

IIA) to high-risk (HR) stages (TNMB IIB to IVB), which involve tumors or generalized 

erythroderma
2,3

. At the cellular level, approximately 20% of patients with HR show 

histological transformation with transformed MF cells (tMF), a feature associated with poor 

prognosis
4–6

. Transformation is defined by the presence of more than 25% large cells 

(immunoblasts, large pleomorphic cells, or large anaplastic cells), which may or may not 

express CD30 within the infiltrate of the MF lesion
5
. At the molecular level, MF is genetically 

heterogeneous, with no uniform single nucleotide variants (SNVs) and somatic copy number 

alterations (SCNAs). Previous microarray gene expression profiling studies of CTCLs, 

particularly MF, revealed deregulated expression of TP53, PLCG1
7,8

, and TNFR2
9
, and 

deletions of the JAK-STAT signaling inhibitors SOCS1 and HNRNPK
10

. Upon histological 

transformation, loss of chromosomal region 9p21.3, where the tumor suppressors CDKN2A 

and CDKN2B reside, is commonly observed
10–13

. 

Nevertheless, the molecular underpinnings of disease progression in patients with MF 

have not been extensively studied; thus, clinicians rely on suboptimal clinical variables for 

risk stratification. To identify the molecular drivers of disease progression and aggressiveness, 

which may help improve clinical practice, we collected samples from patients with MF at 

different stages of the disease and performed deep whole exome sequencing (WES) for the 
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detection of somatic events. Specifically, we sequenced DNA from 67 skin samples obtained 

from 48 patients, including 18 sequential samples from patients who exhibited progression 

from LR to HR stages. This approach allowed us to characterize the genomic landscape of 

MF across the stages of progression, identify putative driver genes contributing to the 

progression of patients with LR, and study the clonal evolution of tumor cells during MF 

progression. Overall, this study provides new insights into the genetic risk factors of disease 

progression in patients with MF, which may help improve clinical prognostication models and 

lead to the discovery of novel therapeutic approaches for patients with MF. Although these 

findings identify patients with a high risk of progression, further validation in independent 

cohorts is needed to confirm their clinical utility.  
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Methods 

Patient samples. We studied 67 tumor samples from a cohort of 48 patients diagnosed with 

MF at the Lille University Hospital between 2003 and 2017. All cases were reviewed by local 

specialists from the French Study Group on Cutaneous Lymphomas (GFELC) Network. 

Immunohistochemistry was performed using the following panel: CD20, PAX5, CD2, CD3, 

CD4, CD5, CD7, CD8, CD30, PD1, and Ki-67. Another immunohistochemistry analysis of 

CD25 was performed in patients samples with or without gain10p15.1. The diagnosis of MF 

was confirmed by PCR to detect clonal recombination of the T-cell receptor gene. We defined 

two prognostic groups: the LR group  with TNMB stages IA, IB, and IIA and the HR group 

with either high TNMB stage (IIB, III, and IV) or transformed histology. Samples were 

extracted from 67 frozen skin biopsies stored in the Biology-Pathology-Genetics unit’s tumor 

bank (certification NF 96900-2014/65453-1). After macro-dissection of the tumors, the 

percentage of tumor cells was visually estimated by microscopic observation. In total, the 

cohort included 67 tumor samples from 48 patients. For 13 of these patients, sequential 

samples were collected at different stages of disease progression. This study was approved by 

the Institutional Review Board (IRB) of Lille University Hospital and Nord Ouest IV 

(protocol #ECH18/03) in accordance with the Declaration of Helsinki and all patients 

provided written informed consent. 

DNA quality control and WES. The amount of extracted DNA was determined by 

spectrophotometry using the "Quant-iT Picogreen dsDNA Assay" kit (Thermo Fisher 

Scientific). For WES, 100ng of genomic DNA was fragmented on the Covaris ultrasonicator 

to target a base pair peak of approximately 150-200bp. DNA libraries were prepared using the 

Agilent SureSelect XT low input kit with target region capture using Agilent SureSelect 

Human All Exon V7 (Agilent Technologies) and the Illumina Dual-Index Adapter primer kit 

(Illumina). Libraries were generated in an automated manner using the Bravo NGS liquid 
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handling robot in accordance with the supplier's recommendations. The final libraries were 

assessed using the Agilent High Sensitivity DNA Analysis kit on the Bioanalyzer 2100, and 

quantified by qPCR using the Kapa Library Quantification kit (Roche). Libraries were pooled 

and sequenced using 2 × 100bp paired-end reads on an Illumina NovaSeq 6000 platform on a 

S4 flowcell. 

Alignment and quality control. Data were analyzed on the Terra computing platform (Broad 

Institute - BI, Cambridge, MA), which aggregates bioinformatics tools for genomic data 

analysis. The quality of the raw sequencing output in fastq format was obtained using 

FastQC
14

 software and visualized at the whole cohort level with MultiQC
15

. Illumina primers, 

very small reads (< 30 bp), and poor quality reads were removed with CutAdapt
16

. Sequences 

were aligned with BWA-MEM
17

, and alignment quality was estimated using Picard software 

suite tools. Post-alignment cleanup consisted of the removal of duplicate reads with 

MarkDuplicate
18

 (Picard, BI), local realignment around InDels with IndelRealigner, and base 

quality recalibration with BaseRecalibrator and ApplyBQSR
19

. During sample preparation in 

the laboratory, there were risks of contamination or inversion, which were checked with 

CalculateContamination
20

 and CrossCheckLaneFingerprints
18

, respectively, and no errors 

were identified. Finally, the potential oxidation of guanine to 8-oxoguanine (OxoG) artifacts 

that can occur during the preparation of genomic libraries under the combined effect of heat, 

DNA cutting, and the introduction of metal contaminants were removed with 

CollectOxoGMetrics
18

. Overall, tumor samples meeting all quality control cut offs had an 

average coverage of 99.72% on the GRCh37 assembly a with mean target depth of coverage 

of 231.85X. 

Copy number analysis from WES data. SCNAs and genome-wide allelic variations were 

detected using ModelSegments
20

 software (BI). To summarize, the software will use the panel 

of normal (PoN) of 13 samples to detect copy and allele number variations in each tumor 
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sample and model several segments. The software was run in Tumor-Only mode for the entire 

set of samples and run again in “Matched-Normal” mode for the three tumor samples that had 

an associated normal sample. Frequent large and focal SCNAs in the cohort were highlighted 

by GISTIC2.0
21

 using a q-value threshold of 0.01. 

Mutation calling of recurrently mutated genes. SNVs and InDels were detected using a 

bioinformatics pipeline developed by the BI and called “CGA WES Characterization 

Pipeline”. SNVs were detected by MuTect
22

 and InDels by Strelka
23

 and Mutect2
24

 (BI). The 

results of these three software programs were then filtered using MAFPoNFilter
25

 (BI). The 

latter uses two PoNs to segregate somatic from germline variants: the one from our cohort 

(from 13 WES normal samples) and the controlled access PoN used in the routine analysis of 

the BI (8,334 normal samples from the TCGA database). Somatic variants (SNVs and InDels) 

were annotated for their oncogenic effect using Variant Effect Predictor
26

 and Oncotator
27

. 

They were then validated using the MutationValidator tool (BI), which establishes the 

minimum number of reads carrying the variant for it to be considered somatic. Genes more 

frequently mutated than chance were determined using MutSig2CV
25

 (BI). Variants carried 

by genes known to be "fishy genes" i.e., known false-positive genes that are not plausible in 

the development of cancers, were manually removed according to the list established by 

Lawrence et al. 2013
28

. 

Panel of normal. In addition to the 3 normal samples from our cohort, 10 additional human 

blood samples were provided by the Research Blood Component (Watertown, Massachusetts, 

USA). These 13 samples formed a PoN to filter out possible errors during the preparation or 

sequencing steps, as well as germline genetic/genomic events. As a final criterion to filter 

potential germline variants, we employed bash scripts to count the occurrence of mutated 

variants in our cohort of PoN samples in the fastq format. First, we converted the maf file into 

a two-motive list per variant, consisting of 11 nucleotides before and after the variant. The 
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first motive represented the wildtype (WT), corresponding to the reference variant, whereas 

the second one was the mutated (MU) form, representing the alternate variant. Subsequently, 

we used the “do_it.sh” bash script from the GitHub repository mafouille/HotCount 

(https://github.com/mafouille/HotCount) to count the number of occurrences of both WT and 

MU motives in the PoN. Variants with MU patterns that appeared more than once in the PoN 

were excluded. This additional check not only reveals supplementary potential artifacts, but 

also modulates the stringency of the filtering process, complementing the PoN in the pipeline. 

Estimation of purity, ploidy and cancer cell fraction. ABSOLUTE
29

 (BI) software 

determined the purity and ploidy of each sample from the SNVs and SCNAs (Supplementary 

Table S10), and thus served us to define the CCF of each genomic alteration. For tumor 

samples without associated normal samples, we applied a tumor-only Germline Somatic Log 

odds filter, as described in Chapuy et al. 2018
30

. To summarize, for each variant, its CCF, 

sample ploidy and purity, and local CN were used to calculate the probability that the allelic 

fraction of the variant was consistent with a modeled allelic fraction for either a germline or 

somatic hypothetical event. Thus, the filter set a threshold for each sample to remove 

additional germline variants. To eliminate additional germline events, we set the tumor-only 

threshold to -1. 

GnomAD filtering. We used the Genome Aggregation Database gnomAD to exclude 

potential germline mutations. The Human Genome Variation Society (HGVS) genomic 

identifier (HGVS_genomic_change column in maf file) was used in the VEP GRCH37 

Ensembl database to obtain gnomAD allele frequency. A cut-off value of 0.0001 was applied. 

Statistical Analysis. Time-to-event end points were estimated using the Kaplan-Meier 

method. Differences in the survival curves were assessed using the log-rank test. The median 

follow-up was calculated using the reverse Kaplan-Meier method. The TTP was measured 
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from the date of diagnosis to the date of documented progression to HR. Cox proportional 

hazards modeling was performed to assess the impact of genetic alterations on the risk of 

disease progression. Violin plot conditions were compared using the non-parametric 

Wilcoxon test. For the forest plot, events with a low frequency of less than ~20% (i.e. 9 

patients) were not analyzed (Figure 2A). Figures and statistical estimations were obtained 

using R v.3.6.3 and MATLAB. R packages used are “maftools” v2.12.05 with oncoplot 

(Figure 1A), maf_compare (Figure 2A) and somaticInteractions (Figure 3B) functions, 

“survival” v3.4-0 and “survminer” v0.4.9. (Kaplan Meier graphs, Figure 2), 

“chrisamiller/fishplot” v0.5.1 (Fishplots, Figure 4). The maf_Compare function performs a 

Fisher test on all genes between the LR and HR cohorts to detect differentially mutated 

SNVs/SCNAs. Other figures were generated using the R ggplot2 v3.4.0 package. 

 

This study was approved by the Institutional Review Board (IRB) of Lille University Hospital 

and Nord Ouest IV (protocol #ECH18/03) in accordance with the Declaration of Helsinki and 

all patients provided written informed consent. 
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Results 

Genomic landscape of MF. The median age in our cohort was 62.5 years (range 19-94), with 

a 60% male predominance, which is consistent with the known distribution of MF in the 

population 
2
. Patients were stratified based on the TNMB classification into LR (stage IA, IB 

or IIA) and HR (stage IIB to IVB) (Supplementary Figures S1A-D and Supplementary Tables 

S1 and S7). We detected mutations by WES and analyzed 67 tumor samples from 48 patients, 

using a validated pipeline to filter germline variants and artifacts from tumor-only samples
30

 

(Methods and Supplementary Figures S1 and S2). Thirteen patients had sequential sampling 

(Supplementary Figures S1C and D). 

We found a median of 3.5 mutations/Mb corresponding to a median of 135 SNVs or 

insertion-deletions (InDels) per sample. The most recurrently mutated genes comprise 

previously reported mutational drivers in T-cell lymphoma, and 51% of patients had a 

mutation in at least one of these drivers (Figure 1A). These included the T-cell differentiation 

transcription factor JUNB (p.A282V, Figure 1B) in 13% of the cases
31–34

; the epigenetic 

factor TET2 in 9% of the cases
35–38

, the component of the MAPK pathway MAPK1 in 6% of 

the cases (Figure 1B); the transcription factor FOXA1 involved in interferon signaling and 

immune response suppression
37,39

; the tyrosine kinase receptor FLT4; the phospholipase 

PLCG1 involved in NF-κB and NFAT signaling
7,40

; the JAK/STAT signaling pathway factors 

STAT3, STAT5A, and STAT5B; and TP53 (Figure 1A and Supplementary Figure S4 and 

Supplementary Table S2).  

Next, we identified significantly recurrent SCNAs by using GISTIC2.0
21

. Overall, 

SCNAs were the most common genomic alterations and were present in 84% of cases (Figure 

1A). Specifically, we detected significantly recurrent alterations, including 8 arm-level and 29 

focal copy number (CN) losses, and 2 arm-level and 1 focal copy gains (q-value ≤ 0.1; 

Supplementary Figures S3A and B and Supplementary Table S11). The frequencies of these 
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SCNAs ranged from 6% to 57%, and the number of genes in the focal peaks varied from 1 

(MUC12 in del7q22.1) to 576 (del6p21.33) (Supplementary Tables S12 and S13). In the focal 

CN gain10p15.1 (26 genes, frequency of 13%) resides interleukin-2 receptor alpha and 

interleukin-15 receptor alpha (IL2RA and IL15RA) as well as the NF-κB pathway protein 

kinase PRKCQ. In particular, IL2RA and IL15RA play crucial roles in the phosphorylation of 

STAT3 and STAT5 in the JAK-STAT pathway, likely contributing to the pathogenesis of 

MF
41–43

. Among the tumor suppressor genes impacted by the most frequent CN loss were 

TMEM259 (19p13.3, frequency 57%), TP53 (17p13.1, 41%), SUZ12 and NF1 (17q11.2, 

33%), NOTCH1 (9q34.3, 26%), CARD11 (7p22.3, 24%), ZEB1 (10p11.22, 17%), TNFAIP3 

(6q16.3, 15%), CDKN2A (9p21.3, 11%), and CDKN1B (12p12.2, 9%). 

Mutational processes produce distinctive footprints called mutational signatures in the 

cancer genome that capture both DNA damages and repair mechanisms. We applied 

SignatureAnalyzer
44

, a tool that uses both the three-bases mutational sequence context and the 

clustering of the mutation in the genome to define specific COSMIC Single Base Substitution 

(SBS) signatures. Here, we detected two primary mutational signatures: the UV light 

exposure signature SBS7 and the defective DNA repair signature SBS15 (Supplementary 

Figures S5A, B, and E, Supplementary Table S8). The age‐related deamination signature, 

SBS1, was also frequently observed in our cohort but was not sufficiently prevalent to be 

separated from the UV signature. The enrichment of the SBS7 signature is consistent with 

previous studies on cutaneous T-cell lymphoma
32,45,46

 and was also significantly associated 

with HR, suggesting a role for UV radiation in the progression of MF. It is also possible that 

HR tumors are phylogenically older and have more time to accumulate drivers and UV 

signature (Figure 1C). Additionally, there was an association between the total number of 

mutations and SBS7 signature (Wilcoxon test, p = 5.735e
-12

). Signature SBS15 is one of the 

seven mutational signatures related to defective DNA mismatch repair and microsatellite 
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instability that are found in different cancer types. The contribution of SBS15 was similar in 

the LR and HR samples, suggesting a more founder event (Supplementary Figure S5G). Next, 

we determined the relative contribution of SBS7 and SBS15 signatures to the mutational 

burden of driver genes (Supplementary Figure S5E). Five genes were enriched with mutations 

associated with SBS15, including JUNB, STAT3, MAML2, FLT4, and FOXA1, whereas nine 

genes were predominantly associated with SBS7, including TET2, MAPK1, TP53, EPB41L3, 

MAGI1, PRKCB, HCK, L3MBTL4, and MECOM. 

Association of genetic features to disease stage and outcome. We further compared the 

genomic profiles of patients with LR disease to those of patients with HR disease 

(Supplementary Tables S3 to S6 and S9). All CN gain7q (OR 0.07, p = 0.002) and 

gain10p15.1 (IL2RA and IL15RA, OR 0.11, p = 0.019) were found in patients at HR, as were 

del10q24.32 (NFKB2, OR 0.09, p = 0.010) and del10p11.22 (ZEB1, OR0.12, p = 0.038) 

(Figure 2A). Conversely, del17q11.2 (SUZ12, NF1) was significantly associated with LR (OR 

4.84, p = 0.014). We observed a higher mutation rate in HR samples, with a median of 3.95 

mutations/Mb compared to 3.02 mutations/Mb in LR samples (p = 0.019) (Supplementary 

Figure S5F). The increased mutation rate in HR was predominantly associated with the UV 

light exposure signature SBS7, suggesting either its role in disease progression, or else 

reflecting time and addition of drivers (Figure 1C and Supplementary Figure S5G). 

Next, we assessed the impact of putative driver mutations at diagnosis on overall 

survival (OS) in patients with a median follow-up time of 4.3 years (range 0.3-14 years). In 

total, 4 SCNAs were significantly associated with shorter OS, (Figure 2B to E): del10p11.22 

(ZEB1, median OS [mOS] of 2.4 vs. 8.9 years, p = 0.00029); gain10p15.1 (IL2RA, IL15RA, 

mOS of 2.4 vs. 5.8 years, p = 0.00029); gain7q arm (mOS of 2.6 vs. 8.9 years, p = 0.011); and 

del6q16.3 (TNFAIP3, mOS 1.9 vs. 5.8 years, p = 0.021). Furthermore, the presence of 
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del10p11.22, gain10p15.1 and del6q16.3 remained a significant risk factor in a multivariate 

stepwise analysis, accounting for the patient’s clinical stage (Supplementary Figures S5C and 

D). Notably, no SNVs were shown to affect OS. In the LR group, 7 patients progressed and 

19 did not progress during follow-up. Patients with LR disease and del6q16.3 (TNFAIP3) had 

shorter time to progression (TTP) (median 0.8 years vs. Not Reached [NR], p = 0.0031) 

(Figure 2F). This alteration is present in 15% of patients with LR at diagnosis and could serve 

as a prognostic marker in clinical practice for future publication with a validation cohort.  

Regarding gain10p15.1, we observed a higher expression of CD25 by 

immunohistochemistry of samples from patients with gain10p15.1 as compared to patients 

without gain10p15.1. This is consistent with a link between gain of IL2RA and the surface 

expression of CD25, suggesting a role of IL2/IL2RA signaling in the disease progression 

(Figure 2G). 

The Clonal Architecture and Phylogeny of MF. Next, we estimated the cancer cell fraction 

(CCF) for each putative driver and determined whether the alterations were clonal (≥ 0.9) or 

subclonal (< 0.9). We observed heterogeneity in the clonality of genomic alterations in 

patients with MF. Certain alterations were frequently clonal, such as del9p21.3 (CDKN2A), 

del10p11.22 (ZEB1), gain7q, and mutations in PRKCB or STAT5B. Other alterations were 

more frequently subclonal, such as mutations in TET2, TP53, PLCG1 or del17p, which likely 

represent later events in the disease course (Figure 3A). 

 Subsequently, we analyzed the co-occurrence of driver genes and SCNAs. We found 

that del9p21.3 (CDKN2A) significantly co-occurred with gain7q and del10p11.22 (ZEB1). 

Gain10p15.1 (IL2RA, IL15RA) was significantly co-segregated with del6q16.3 (TNFAIP3) 

and TP53 mutations. Del16p13.3 (CREBBP) co-occurred with del17p and de19p13.3 

(TMEM259) (Figure 3B). We applied a mutation-ordering method to samples with pairs of 
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clonal and subclonal alterations
47

. Given that clonal mutations occur before subclonal events, 

we defined the timing of the main genetic alterations. We observed two general patterns 

defining the phylogeny of the disease (Figure 3C): first, clonal gain7q that often co-occurs 

with clonal del9p21.3 (CDKN2A) or del10p11.22 (ZEB1), with further acquisition of 

gain10p15.1 (IL2RA, IL15RA) at progression; second, the clonal mutation of the tyrosine 

kinase PRKCB followed by del17p13.1 (TP53) and del12p12.1 (CDKN1B). Of note, gain7q 

and del10p11.22 (ZEB1) are often clonal and associated with an unfavorable outcome 

suggesting that the molecular path to aggressiveness is made at an early stage of the disease. 

Gain10p15.1 (IL2RA, IL15RA), which is also associated with HR, represents a transforming 

molecular event in the disease course. 

 We further analyzed sequential samples from 7 patients who progressed from early 

stages (LR progressors) to advanced stages of the disease, with sampling intervals ranging 

from 3 months to 9 years. We observed evidence of clonal heterogeneity at diagnosis in all 7 

cases, indicating that clonal branching had already occurred at the early stage of the disease. 

Moreover, we noticed cases where subclones that were initially small at diagnosis exhibited 

substantial expansion at the later time point, indicating a strong driver potential for their 

mutations/SCNAs. Specifically, this was observed in 3 patients with small subclones 

harboring the JUNB mutation or del12p13.1 (CDKN1B), which were selected for and became 

dominant at disease progression (Figure 4B, C, and D). In these cases, all alterations detected 

in late-stage samples were already present at the baseline, pointing to a linear pattern of clonal 

evolution. In another instance, however, a JUNB-mutant subclone was first identified at the 

time of disease progression, suggesting that further branching had occurred and drove the 

progression from LR to HR disease (Figure 4A). In this case, the JUNB mutation was 

acquired on top of a clonal VAV1 mutation, involved in T-cell receptor signaling, and has 

been reported in various T-cell malignancies (Figure 5). Clonal evolution was also observed 
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during treatment, with the expansion of a resistant del17p13.1 subclone in a patient receiving 

multiple lines of treatment within 3 years of disease progression (Figure 4E). Finally, in a 

patient who did not progress and whose two samples were sequenced at the LR stage but 5 

years apart, no new alterations or increases in the CCF of baseline mutations were noticed at 

the later time point, implying that clonal heterogeneity at baseline may not be sufficient for 

disease progression (Figure 4F).  
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Discussion 

In this study, we leveraged WES data to analyze tumor samples from 48 patients with 

newly diagnosed MF, together with sequential samples at later time points from 13 patients. 

We analyzed the most recurrent genomic alterations, as well as their clonal heterogeneity and 

clonal evolution, to temporally order these alterations and gain insight into the phylogeny of 

MF. Our results highlight the complexity of MF, with a median of 135 different genomic 

alterations per tumor. The most recurrent alterations in MF were consistent with previous 

observations in T-cell lymphoma in general
9,32,36,38,48,49

 (Mycosis fungoides, Sézary syndrome, 

primary cutaneous CD30
+
 T-cell lymphoproliferative disorders, primary cutaneous γδ T-cell 

lymphoma), with alterations in the NF-κB pathway (such as deletion NFKB2 in 10q24.32, 

gain of PRKCQ in 10p15.1, mutation of PRCKB, deletion of CARD11 in 7p22.3), JAK/STAT 

pathway (e.g. gain of IL2RA and IL15RA in 10p15.1, mutations in STAT3, STAT5A and 

STAT5B), MAPK pathway (mutations in JUNB and MAPK1), cell cycle pathway (such as 

deletion CDKN1B in 12p13.1, CDKN2A in 9p21.3), and inhibition of apoptosis (deletion and 

mutations of TP53 and deletion of TNFAIP3 in 6p16.3) (Figure 5). 

We identified genomic alterations that are associated with HR stages of the disease: 

gain7q and gain10p15.1 (IL2RA and IL15RA), del10q24.32 (NFKB2) and del10p11.22 

(ZEB1), suggesting their role in disease progression. Conversely, del17q11.2 (SUZ12, NF1) 

was associated with the LR stages of the disease. The mutational signature SBS7, associated 

with UV light, was also associated with HR stages and was enriched in the mutational process 

of genes such as TET2, MAPK1, TP53, and PRKCB. We also describe the different patterns of 

phylogeny of MF, with early events such as gain7q or mutations in PRCKB and further 

acquisition of alterations such as gain10p15.1 (IL2RA and IL15RA), del17p13.1(TP53) or 

del12p13.1 (CDKN1B). This clonal evolution from the LR to HR stages was either linear or 

branched, with the selection of subclones with strong driving potential. 
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We also assessed the prognostic value of these genomic alterations during diagnosis. 

We found 4 SCNAs that were significantly associated with a shorter OS: del10p11.22 (ZEB1), 

gain10p15.1 (IL2RA, IL15RA), gain7q, and del6q16.3 (TNFAIP3). The identification of these 

HR genomic alterations can help in the clinical management of MF. Early focal lesions of MF 

are sometimes difficult to diagnose and histologically differentiate from eczematous or 

psoriasis dermatitis
50

. Specific genomic alterations associated with adverse outcomes can help 

to guide the diagnosis of MF. Our data illustrate the role of gain10p15.1 (IL2RA, IL15RA) in 

disease progression. Taken together, these genomic alterations represent potential early 

indicators that may be useful for MF prognostication but require validation in future studies. 

This can be therapeutically relevant, as cytokine inhibitors such as bnz-1 are currently being 

tested in clinical trials. 

In conclusion, sequencing a large cohort of patients with MF, including sequential 

samples, has allowed us to understand the genomic complexity of MF, temporal ordering of 

genetic events, and biomarkers that are associated with HR and disease progression. We 

believe that introducing NGS evaluation at the time of MF diagnosis can improve the 

identification of patients at a  high risk of disease progression and their clinical management.  
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Figure legends 

Figure 1. Landscape of most recurrent genomic alterations in MF. A. Landscape of 

genomic alterations in 67 tumor samples of MF divided into low-risk and high-risk disease 

based on the TNM stages. Alterations are divided into single nucleotide variants (SNVs) and 

somatic copy number alterations (SCNAs). B. Driver oncogene maps for JUNB and MAPK1. 

C. Relative enrichment of signature activities per samples divided into low-risk, low-risk 

progressors and high-risk. 

Figure 2. Correlation of genomic events to the disease stage. A. Forest plot showing the 

association between individual genes alteration and clinical stage of MF divided into low-risk 

and high-risk, as depicted by odds ratio. B to E: Kaplan Meier plots of individual genetic 

factors predictive of OS in univariate and multivariate models of 48 patients with a newly 

diagnosed MF: (B.) del10p11.22; (C.) gain of 10p15.1; (D.) gain of 7q; and (E.) del6q16.3. F. 

Kaplan-Meier curves for analysis of time to progression in patients with LR disease. P-values 

were derived from log-rank test. G. CD25 immunohistochemistry at diagnosis of MF skin 

biopsies in patients with gain of 10p15.1 (top panels, MF sample of patient 18 and patient 14 

with presence of tMF cells) or without gain of 10p15.1 (bottom panels, MF sample of patient 

23 and patient 16). Scale bars indicate 150µm. 

Figure 3. Clonal heterogeneity and inferred timing of genetic drivers. A. Proportion in 

which recurrent drivers are found as clonal or subclonal across the 67 samples (top), along 

with the individual cancer cell fraction (CCF) values for each sample affected by a driver 

(bottom). Median CCF values are shown (bottom, bars represent the median and interquartile 

range for each driver). B. Correlation matrix for the most recurrent genomic alterations for the 

48 patients with MF, with Fisher’s Exact test to detect such significant pair of mutations. C. 

Timing of genomic alterations with early events at top and late events at bottom. Color 

indicates alteration types. Arrows between two alterations were drawn when two drivers were 
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found in one sample with an excess of clonal to subclonal events. Dashed arrows indicate n = 

1 clonal-subclonal pair and solid arrows indicate n ≥ 2 clonal-subclonal pairs. 

Figure 4. Clonal evolution of sequential samples. Fish plots of five serial cases of MF with 

samples at low-risk stages who progressed to high-risk stages (A-E). And one serial case with 

both time points at low-risk stage because the patient did not progress (F). TNMB 

classification has been indicated (green for Low-Risk and dark red for High-Risk samples) 

and tMF stands for transformed mycosis fungoides. 

Figure 5. Recurrent genetic alterations affecting key signaling pathways involved in 

mycosis fungoides. In this diagram, frequently mutated genes with well-established roles in 

these signaling pathways have been depicted representing the proteins they encode. 
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