
American Society of Hematology
2021 L Street NW, Suite 900,
Washington, DC 20036
Phone: 202-776-0544 | Fax 202-776-0545
bloodadvances@hematology.org

Machine learning to optimize automated RH genotyping using whole-exome sequencing
data
Tracking no: ADV-2023-011660R2

Ti-Cheng Chang (St. Jude Children's Research Hospital, United States) Jing Yu (St.Jude Chidren's
Research Hospital, United States) Zhaoming Wang (St. Jude Children's Research Hospital, United
States) Jane Hankins (St. Jude Children's Research Hospital, United States) Mitchell Weiss (St.
Jude Children's Research Hospital, United States) gang wu (St Jude Children's Research Hospital,
United States) Connie Westhoff (New York Blood Center Enterprise, United States) Stella Chou
(University of Pennsylvania, The Children's Hospital of Philadelphia, United States) Yan Zheng
(St.Jude Chidren's Research Hospital, United States) 

Abstract:
Rh phenotype matching reduces but does not eliminate alloimmunization in patients with sickle cell
disease (SCD) due to RH genetic diversity that is not distinguishable by serological typing. RH
genotype matching can potentially mitigate Rh alloimmunization, but comprehensive and accessible
genotyping methods are needed. We developed RHtyper as an automated algorithm to predict RH
genotypes using whole-genome sequencing (WGS) data with high accuracy. Here, we adapted RHtyper for
whole-exome sequencing (WES) data which are more affordable but challenged by uneven sequencing
coverage and exacerbated sequencing read misalignment, resulting in uncertain prediction for 1) RHD
zygosity and hybrid alleles, 2) RHCE*C versus RHCE*c alleles, 3) RHD c.1136C>T zygosity, and 4)
RHCE c.48G>C zygosity. We optimized RHtyper to accurately predict RHD and RHCE genotypes using WES
data by leveraging machine learning models and improved the concordance of WES with WGS predictions
from 90.8% to 97.2% for RHD and 96.3 to 98.2% for RHCE among 396 patients in the Sickle Cell
Clinical Research and Intervention Program (SCCRIP). In a second validation cohort with 3030 cancer
survivors (15.2% Black or African Americans) from the St. Jude Lifetime Cohort Study (SJLIFE), the
optimized RHtyper reached concordance rates between WES and WGS predications to 96.3% for RHD, and
94.6% for RHCE. In conclusion, machine learning improved the accuracy of RH predication from WES
data. RHtyper has the potential, once implemented, to provide a precision medicine-based approach
to facilitate RH genotype-matched transfusion and improve transfusion safety for patients with SCD.
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supplemental Table 3 and Table 4.  The source code and tutorial of RHtyper can be accessed via 
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Running title: Genotyping RH genes by RHtyper using WES data 

  

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2023011660/2219272/bloodadvances.2023011660.pdf by guest on 09 M

ay 2024



3 

 

KEY POINT 

Machine learning optimized RHtyper for automated and accurate Rh blood group genotyping 

from whole-exome sequencing data.  
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Abstract 

 

Rh phenotype matching reduces but does not eliminate alloimmunization in patients with sickle 

cell disease (SCD) due to RH genetic diversity that is not distinguishable by serological typing. 

RH genotype matching can potentially mitigate Rh alloimmunization, but comprehensive and 

accessible genotyping methods are needed. We developed RHtyper as an automated algorithm to 

predict RH genotypes using whole-genome sequencing (WGS) data with high accuracy. Here, 

we adapted RHtyper for whole-exome sequencing (WES) data which are more affordable but 

challenged by uneven sequencing coverage and exacerbated sequencing read misalignment, 

resulting in uncertain prediction for 1) RHD zygosity and hybrid alleles, 2) RHCE*C versus 

RHCE*c alleles, 3) RHD c.1136C>T zygosity, and 4) RHCE c.48G>C zygosity. We optimized 

RHtyper to accurately predict RHD and RHCE genotypes using WES data by leveraging 

machine learning models and improved the concordance of WES with WGS predictions from 

90.8% to 97.2% for RHD and 96.3 to 98.2% for RHCE among 396 patients in the Sickle Cell 

Clinical Research and Intervention Program (SCCRIP). In a second validation cohort with 3030 

cancer survivors (15.2% Black or African Americans) from the St. Jude Lifetime Cohort Study 

(SJLIFE), the optimized RHtyper reached concordance rates between WES and WGS 

predications to 96.3% for RHD, and 94.6% for RHCE. In conclusion, machine learning improved 

the accuracy of RH predication from WES data. RHtyper has the potential, once implemented, to 

provide a precision medicine-based approach to facilitate RH genotype-matched transfusion and 

improve transfusion safety for patients with SCD.   
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Introduction  

Blood transfusion is an essential treatment for chronic anemia disorders including sickle cell 

disease (SCD) and thalassemia. Exposure to donor red blood cell (RBC) antigens can lead to 

alloimmunization and increase the risk of hemolytic transfusion reactions with subsequent 

transfusions.
1
 Prophylactic matching for Rh (C, E or C/c, E/e) and K antigens lowers the risk of 

alloimmunization for patients with SCD and thalassemia but alloantibody formation against Rh 

blood group remains a challenge due to the genetically diverse RH genes of Black patients and 

blood donors.
2,3

  The Rh blood group consists of five major antigens, D, C, c, E and e, and is 

encoded by highly homologous RHD and RHCE genes.
4
  RHD and RHCE genes of individuals 

of African descent exhibit high diversity with single nucleotide polymorphisms (SNPs), 

insertions/deletions (indels), and structural variants. Approximately 450 RHD and 190 RHCE 

alleles have been identified (https://www.isbtweb.org/, accessed on 8/06/2023), and more than 

50 Rh variant antigens have been described serologically. We found in our practice that 48-49% 

of patients with SCD and 41% Black blood donors in the US have a RHD or RHCE variant 

(excluding altered alleles of RHD*10.00 or RHD*DAU0 and RHCE*01.01 or RHCE*ce48C), 
5,6

  

and 7% of D-positive patients with SCD have a partial D.
7
 In Brazil, 15% of patients with SCD 

and 8% of African Brazilian blood donors have both variant RHD and RHCE alleles.
8
  These 

variant RH alleles encode proteins associated with loss of epitopes or expression of neo-epitopes. 

Individuals with variant RH alleles are at risk of alloimmunization when exposed to conventional 

or variant Rh antigens differing from their own.  Since serological antigen typing cannot 

distinguish the presence of most variant Rh antigens,
2
 RH genotyping and consideration of RH 

genotype matching can potentially improve resource allocation of valuable Black blood donors 

and avoid Rh alloimmunization. 

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2023011660/2219272/bloodadvances.2023011660.pdf by guest on 09 M

ay 2024



6 

 

 

 Next generation sequencing (NGS) data such as whole-genome sequencing (WGS) and 

whole-exome sequencing (WES) offer comprehensive evaluation of the genome and have been 

used for RH genotyping.
9-13

 Genotyping RH using NGS data are challenging since RHD and 

RHCE are duplicated genes and share 97% sequence identity.  Sequencing reads from the highly 

homologous regions may map ambiguously, making it difficult to determine the true genomic 

origin of those reads. Therefore, analysis of NGS data from the RH loci requires sophisticated 

bioinformatic tools that can differentiate between true genetic variants and sequencing artifacts. 

We previously developed RHtyper for automated and accurate detection of the complex RH 

genotypes of Black or African American individuals using WGS data.
6
  RHtyper relies on a 

Bayesian likelihood-based framework to infer RH genotypes directly after short read sequence 

alignment. Both sequence consistency at each SNP/indel and phase consistency across adjacent 

SNPs/indels are considered to improve prediction accuracy. RHtyper also incorporates coverage 

profiling to determine RHD zygosity and hybrid alleles, and can further define potential 

breakpoints of the hybrid RH alleles by the Circular Binary Segmentation algorithm. In a 

validation cohort of 57 patients with SCD, RHtyper achieved 100% accuracy for RHD, and 98.2% 

accuracy for RHCE when compared to the RH genotypes verified by multiple molecular methods.  

Upon application to the Sickle Cell Clinical Research and Intervention Program (SCCRIP) study 

cohort, RHtyper achieved high concordance rates of 98.3% with C serological typing (n=360 

patients), 99.54% with D serological typing (n=219 patients).     

 

WES is a focused and cost-effective strategy to identify exonic variations but has 

limitations we sought to overcome with machine learning. Sequencing coverage of WES is 
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uneven because of variable sequencing read enrichment by capture oligonucleotides at different 

locations, leading to inaccurate prediction for copy numbers of exons and SNPs.  WES data lack 

most intronic sequence markers essential for aligning sequencing reads, resulting in 

misalignments among highly homologous exons. Here, we adapted RHtyper for WES data by 

leveraging machine learning to address the uneven coverage and sequence misalignments, and 

improved WES-based RH genotyping substantially.  

 

Methods  

Patients 

Existing WES and WGS data from 396 patients with SCD enrolled in the SCCRIP study 

and 3030 cancer survivors enrolled in St. Jude Lifetime Cohort Study (SJLIFE) at St Jude 

Children’s Research Hospital (SJCRH) were included in this study. Of the 396 SCD patients, 56 

patients had RH genotypes tested by standard RH genotyping method, SNP-based and targeted 

molecular assays, and confirmed by Sanger sequencing and NGS as previously described
6
  and 

in Supplemental Methods. They were used to further verify the WES-predicted genotyping 

results. The SCCRIP is a lifetime longitudinal cohort study of patients with SCD, in which 

clinical information is prospectively collected and biologic samples are banked, including blood 

for genomics and proteomics studies. (NCT02098863)
14

  The SJLIFE is a retrospective cohort 

study with prospective follow-up and ongoing accrual of oncology patients treated at SJCRH 

who are ≥18 years of age and ≥10 years post-diagnosis from their malignancy.
15

  This study was 

approved by SJCRH institutional review board, and all participants or guardians provided written 

informed consent. 
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WES, WGS and serological typing 

Genomic DNA was extracted from peripheral blood mononuclear cells by standard 

methods, and WGS and WES were performed at HudsonAlpha Institute for Biotechnology and 

the SJCRH Hartwell Center for Bioinformatics and Biotechnology as previously described.
14,16

 

Paired-end reads were aligned against the human genome (hg38) with the Burrows-Wheeler 

Aligner software package.
17

  For patients in the SJLIFE cohort, serological typing of RhD only 

was performed.  

 

Adjustment of RHtyper for WES data 

An RH allele database was curated from the International Society of Blood Transfusion 

(ISBT) database and the now-retired NCBI Blood Group Antigen Gene Mutation (BGMUT) 

database as previously described.
6
 The consolidated database included 419 RHD and 

130 RHCE alleles annotated for genotype determination. Variants are determined according to 

conventional RH mRNA sequences (RHD, L08429, and RHCE, DQ322275), which differ from 

the reference genomic sequence (hg38) by 2 SNPs in the coding region (conventional RHD 

sequence, c.1136T, reference genomic sequence, c.1136C; conventional RHCE sequence,  c.48G, 

reference genomic sequence, c.48C).  

 

The WES-based RHtyper algorithm was developed according to WGS-based RH 

genotyping approach
6
 with modification for WES data and by adding machine learning models 

to improve prediction accuracy (Figure 1). Specifically, the WES-based RHtyper algorithm 

consists of four main steps: 1) variant profiling for SNPs/indels and coverage alterations; 2) 

predicting RHD zygosity and hybrid alleles, RHD c.1136C>T and RHCE c.48G>C, and presence 
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of RHCE*C or RHCE*c allele using established machine learning models; 3) refining the hybrid 

allele and hybrid breakpoint predictions using segmentation; 4) generating likelihood scores 

using genotypes and phased haplotype likelihoods to rank candidate allele pairs. Finally, the 

candidate allele pair with the highest likelihood scores is reported as the predicted genotype. 

 

RH variant calling and coverage profiling 

Variants were called via the SAMtools pileup method
17

 using WES reads that met 

predefined read criteria (base read quality, ≥15; mapping read quality, ≥10; and average read 

quality, ≥15). Counts of A, T, G, and C nucleotides and indels were generated for each exonic 

position of RHD/RHCE genes. The exonic positions with variant allele-frequency > 10% were 

classified as heterozygous sites. SNPs and indels were annotated subsequently with encoded 

amino acid changes. RHD/RHCE coverage profiling was performed as previously described 

using WES data.
6
 

 

Construction of machining learning models 

The WGS-predicted genotypes served as control references.
6
 Informative features were 

selected by the Boruta algorithm (10.18637/jss.v036.i11) based on per-base coverage and variant 

allele frequency. The selected features were then incorporated to construct XGboost models for 

model learning using 75% of the WES data from the SCCRIP study. The modified RHtyper was 

next validated using the remaining 25% of data from the SCCRIP study as well as a second 

patient cohort, the SJLIFE.   

This study was approved by SJCRH institutional review board, and all participants or 

guardians provided written informed consent. 

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2023011660/2219272/bloodadvances.2023011660.pdf by guest on 09 M

ay 2024



10 

 

 

 

Results  

Uneven sequencing coverage of WES data 

The average RH sequencing coverage for 396 patients with SCD of the SCCRIP cohort 

was 56.3× for WES compared to 35.7× for WGS. WES coverage demonstrated high regional 

unevenness, the normalized coverage per RHD exon ranged from -6.09 ± 5.09 to 0.21± 1.60 

(mean ± standard deviation, “0” representing 2 copies), and the normalized coverage per RHCE 

exon ranged from -0.80 ± 0.78 to 1.01± 0.35 (Figure 2 and Supplemental Table 1). In contrast, 

the normalized WGS coverage fluctuated less, ranging from -3.58 ± 3.50 to -0.40 ± 0.85 per 

RHD exon, and from -0.70 ± 0.33 to 0.35 ± 0.41 per RHCE exon. Notably, RHD coverage varied 

more than RHCE regardless of sequencing methods because RHD and RHCE have an identical 

exon 8, and most sequencing reads from exon 8 align to RHCE, reducing RHD exon 8 coverage 

markedly. The unevenness of WES coverage of RH genes affected prediction of zygosity of 

alleles and SNPs.  

 

Limitation of RHtyper using WES data 

Since RHtyper was initially designed for WGS data analysis, we first modified the 

algorithm for WES data to not rely on intronic markers for identification. RHCE*C can be 

predicted by WGS data with high confidence using a 109-bp insertion in RHCE*C intron 2. 

Since this intronic region is not covered by WES, RHCE*C was instead identified by increased 

coverage of RHD exon 2 since RHCE*C and RHD exon 2 are identical, and the reads from 
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RHCE*C typically align to RHD.
9
 Of note, WES data cannot be used to identify alleles with only 

intronic variations.   

 

We next determined RH genotypes using WES data for 396 SCD patients from the 

SCCRIP cohort, and all of whom are Black or African American.  The concordance rates 

between WES and the previously reported WGS predictions
6
 were 90.3% (715/792 alleles) for 

RHD and 96.3% (763/792 alleles) for RHCE (Figure 3A). The problematic determinations 

included 1) RHD zygosity and hybrid alleles, 2) RHCE*C versus RHCE*c alleles, 3) RHD 

c.1136C>T zygosity, 4) RHCE c.48G>C zygosity.  RHD zygosity and hybrid alleles, and 

RHCE*C were predicted based on sequencing coverage of the whole gene (i.e., RHD zygosity) 

or certain exons of the gene (i.e., RHCE exon 4-7 for RHD*03N.01 or RHD*DIIIa-CEVS(4-7)-D, 

RHD exon 2 for RHCE*C), which was less accurate with WES data due to the fluctuated 

sequencing coverage. RHD c.1136C>T (p. Thr379Met), located in exon 8, is the most common 

missense RHD SNP in patients with SCD and the characteristic SNP that defines the RHD DAU 

cluster.
6,19

 Because the reference genomic sequence of RHD represents RHD*10.00 or 

RHD*DAU0 with c.1136T, and the conventional RHD shares exon 8 with RHCE with c.1136C, 

almost all the sequence reads from conventional RHD align to RHCE, resulting in reduced 

coverage of RHD exon 8. To circumvent the skewed coverage of exon 8, RHD c.1136 C>T 

zygosity was determined for WGS data by dividing the reads containing the SNP by genome-

wide average read coverage rather than position-specific read coverage. However, this approach 

was no longer reliable with WES data given the highly variable exome-wide sequencing 

coverage.  RHCE c.48G>C (p. Trp16Cys) resides in exon 1 and is the most common missense 

RHCE SNP found in patients with SCD.
6
 Also RHCE*01.01 or RHCE*ce48C is as common as 
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conventional RHCE*01 or RHCE*ce allele in Black individuls.
5,6

 The sequences of conventional 

RHD and RHCE exon 1 are highly homologous, differing only by one nucleotide, c.48C for RHD 

and c.48G for RHCE.  Without the paired mate sequencing reads that cover the surrounding 

introns to differentiate RHD from RHCE, sequence reads with RHCE c.48G>C frequently 

misalign to RHD, resulting in erroneous G/C fraction and subsequent incorrect allele prediction.  

 

Modification and validation of RHtyper for WES data 

Given the low concordance between WES and WGS predictions, we sought to improve 

RHtyper by incorporating machine learning specific for the problematic alleles and SNPs. The 

SCCRIP cohort was used for training and validating the machine learning models because 1) all 

patients in the SCCRIP cohort are of African descent with highly diverse RHD and RHCE 

genes;
6
 2) despite Rh-phenotype matched blood transfusion, patients with SCD are still at high 

risk for Rh alloimmunization due to the genetic diversity of RH genes and will likely benefit the 

most from receiving RH-genotype matched blood transfusion.
2,5,20

 A total of 1,547 informative 

features for RHD zygosity and hybrid alleles, 255 for RHCE*C versus RHCE*c allele 

differentiation, 240 for RHD c.1136C>T, and 253 for RHCE c.48G>C zygosity were selected to 

build machine learning models (Supplemental Figure 1). The RH genotypes predicted using 

WGS data were used as the reference genotypes because of the high accuracy.
6
 We randomly 

selected 75% of WES data from the SCCRIP cohort for model training, and the remaining 25% 

for validation. Machine learning improved the concordance rates between WES and WGS 

predictions to 98.0% for RHD zygosity and hybrid alleles, 97.0% for the RHCE*C allele, 97.0% 

for RHCE c.48G>C zygosity, and 96.0% for RHD c.1136C>T zygosity. The overall concordance 

rates for the SCCRIP cohort were 97.2% (770/792 alleles) for RHD, 98.2% (778/792 alleles) for 
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RHCE (Figure 3B and Supplemental Table 2 and 3). The remaining discrepancies were due to, 

with substantially fewer numbers though, RHD zygosity and hybrid alleles (6 alleles, 0.8% of 

total 792 RHD alleles), RHCE*C versus RHCE*c (8 alleles, 1% of total 792 RHCE alleles; 6 

RHCE*C mis-predicted as RHCE*c, 0.8% of total RHCE alleles; 2 RHCE*c as RHCE*C, 0.2% 

of total RHCE alleles), RHCE c.48G>C zygosity (5 alleles, 0.6%), RHD c.1136C>T zygosity (9 

alleles, 1.1%), and other SNP discrepancies (RHD, 7 alleles, 0.9%; RHCE, 1 allele, 0.1%).   

 

In the SCCRIP cohort, the RH genotypes of 56 patients were also determined by standard 

RH genotyping methods including RH SNP-array, targeted molecular assays, and verified by 

Sanger sequencing or a 2
nd

 independent NGS as described previously
6
 and in Supplemental 

Methods. Compared to the verified genotypes, the modified RHtyper using WES data achieved 

98.2% (110/112 alleles) accuracy for RHD and 94.6% (106/112 alleles) accuracy for RHCE 

alleles (Table 1). Of note, none of the erroneous predictions would have led to increased risk of 

Rh alloimmunization. One erroneous prediction where patient 1 with “RhC” 

(RHCE*02/RHCE*01.20.01 or RHCE*Ce/RHCE*ce733G) was misidentified by WES as “Rhc” 

(RHCE*01/ RHCE*01.20.02 or RHCE*ce/RHCE*48C733G) could have resulted in the C-

positive patient receiving C-negative blood unnecessarily.  

 

Further validation of the modified RHtyper in the SJLIFE cohort 

Next, we further validated the modified RHtyper in a second available patient cohort, 

SJLIFE consisting of 3030 cancer survivors.  Among 2716 patients with racial information, 84.6% 

(2298) are White, 15.2% (413) Black or African American, 0.11% (3) Asian, 0.04% (1) 

American Indian or Alaska Native, and 0.04% (1) Native Hawaiian or Other Pacific Islander.  
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The concordance rates between WES and WGS predictions were 96.3% (5837/6060 alleles) for 

RHD, and 94.6% (5734/6060 alleles) for RHCE (Figure 4 and Supplemental Table 4).  

Discrepancies included RHD zygosity and hybrid alleles (159 alleles, 2.6% of total 6060 RHD 

alleles), RHCE*C versus RHCE*c differentiation (263 alleles, 4.3% of total 6060  RHCE alleles; 

237 RHCE*C mis-predicted as RHCE*c, 3.9% of total RHCE alleles; 26 RHCE*c as RHCE*C, 

0.4% of total RHCE alleles), RHCE c.48G>C zygosity (37 alleles, 0.6%), RHD c.1136C>T 

zygosity (17 alleles, 0.3%), and SNPs and other discrepancies (RHD, 47 alleles, 0.8%; and 

RHCE, 26 alleles, 0.4%). For 1036 patients with blood type information, the predicted RhD 

serological types using WES data were 99.8% (1034/1036 patients) consistent with the clinical 

serology results; of note, this comparison only assessed whether RHtyper could correctly predict 

the presence or absence of RhD. The predicted frequency of C antigen was 65.23% (1499/2298 

patients) per WGS and 58.96% (1355/2298 patients) per WES for White patients, and 23.24% 

(96/413 patients) per WGS and 24.21% (100/413 patients) per WES for Black or African 

American patients, consistent with the known racial distribution (68% of White people and 27% 

of Black people).
21

  

 

The modified WES-based RHtyper was trained primarily using data from Black or 

African American patients, while the majority of patients in the SJLIFE cohort were White for 

whom the frequency of RH variation is ~1-2%.
21

  Therefore, we compared the concordance rates 

of White versus Black or African American patients in the SJLIFE cohort (Figure 5). 

Discrepancies were significantly higher among White patients for RHD zygosity and hybrid 

alleles (127 alleles or 2.8% of RHD alleles in White patients versus 11 alleles or 1.3% of RHD 

alleles in Black or African American patients, p = 0.0157), and RHCE*C versus RHCE*c 
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differentiation (227 alleles or 5.0% of RHCE alleles in White patients versus 8 alleles or 1.0% of 

RHCE alleles in Black or African American patients; p<0.0001). In contrast, discrepancy for 

RHD c.1136C>T zygosity was significantly higher in Black or African American patients (10 

alleles or 1.2% of RHD alleles in Black or African American patients versus 1 allele or 0.02% of 

RHD alleles in White patients; p<0.0001), although the overall numbers of discrepant alleles 

were very low.  

 

Discussion 

The WGS-based RHtyper relies on sequencing coverage profiles to predict the zygosity 

of alleles and SNPs.
6
 This approach alone was less accurate for analyzing WES data due to the 

uneven sequencing coverage and misalignment of sequencing reads. To improve the prediction 

accuracy with WES data, we optimized RHtyper by leveraging machine learning to target the 

four most affected SNPs and alleles including 1) RHD zygosity and hybrid alleles, 2) RHCE*C 

versus RHCE*c alleles, 3) RHD c.1136C>T zygosity, and 4) RHCE c.48G>C zygosity. Machine 

learning substantially increased the concordance of WES- with WGS-predicted RH genotypes 

when applied to two independent large patient cohorts, SCCRIP and SJLIFE, but a few 

limitations remained.  

 

Manual or automated genotyping of RHD and RHCE from targeted exome sequencing 

and WES data has been performed by multiple groups.
9,10,22-25

 Prediction of RHD zygosity and 

hybrids, and RHCE*C versus RHCE*c alleles by sequencing coverage has consistently been 

difficult with WES data. Schoeman et al reported that the sensitivity to detect a deletion in RHD 

and RHCE was 89.8%, and only 52.8% for duplications using sequencing coverage alone 
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(n=28).
25

  To overcome this limitation, Chou et al. and Lane et al. determined RHD zygosity 

using RHCE as a control since nearly all individuals have two copies of RHCE, and RHCE*C 

identification was based on decreased read coverage of RHCE exon 2 compared to RHCE exons 

1 and 3.
9,13

 Chou et al. reported that the approaches improved the concordance rate to 98% 

(n=54).
9
 Lane et al. developed the first automated algorithm for RBC antigen genotyping using 

WES data.
13

 By using copy number correction factors calculated from 20 individuals of known 

RHD zygosity and C/c antigen status to normalize the sequencing coverage of each exon, the 

authors were able to correctly genotype the remaining 55 individuals. The improvement 

strategies utilized by those studies involved creating pre-determined rules based on data from a 

small cohort of individuals. However, this approach may not be comprehensive enough to 

capture all the necessary information for accurate prediction in a large number of individuals. 

WES data were also not reliable in predicting RHCE c.48G>C and RHD c.1136C>T due to 

misalignment of sequencing reads.
9,25

 The algorithm created by Lane et al was able to detect 

RHD c.1136C>T but could not distinguish homozygous from heterozygous ones.
13

  

                  

We optimized RHtyper for WES data by using machine learning. The learning process 

allows for incorporation of diverse informative features and has been applied to complicated and 

high-dimensional data including genomic sequencing data. It enables accurate predictions based 

on automated data learning rather than simple rule-based classification.  In our study, 

informative features of per-base coverage and variant allele frequency from hundreds to 

thousands of exonic positions were used to identify the problematic SNPs and alleles. Training 

with almost 300 SCD patients from the SCCRIP cohort allowed recognition of intricate patterns 

for accurate prediction. Machine learning markedly improved the concordance rates between 
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WES and WGS predictions to 97.2% for RHD and 98.2% for RHCE in the SCCRIP cohort (n = 

396), and 96.3% for RHD and 94.6% for RHCE in the SJLIFE cohort (n = 3030). By using 

similar machine learning approaches, RHtyper can be extended to analyze other blood group 

proteins encoded by highly homologous genes, for example, the MNS blood group.  

 

Discordant predictions between WES and WGS remained despite machine learning. RHD 

zygosity and hybrid alleles and RHCE*C versus RHCE*c alleles contributed to most of the 

discrepancies. Discordant RHD zygosity and hybrid allele calling occurred more often to patients 

with hemizygous RHD deletion or heterozygous RHD hybrid alleles, which require sufficient 

and even coverage for accurate identification and could remain challenging for certain patients 

even with machine learning.  Since the sequencing coverage of RHD exon 2 is critical in 

differentiating RHCE*C versus RHCE*c alleles, we initially suspected that the coverage might 

be erroneous due to misalignment mediated by SNPs unique in certain patients. However, 

comparison of RHD exon 2 and its surrounding intron sequences (50 bps into the surrounding 

introns) between patients with and without RHCE*C versus RHCE*c discrepancy revealed no 

SNPs that would have led to misalignment (data not shown).  Furthermore, White patients in the 

SJLIFE cohort were more likely to have discordant predictions of RHD zygosity and hybrid 

alleles and RHCE*C versus RHCE*c alleles than Black or African American patients. The 

skewed discordance could be due to higher frequencies of D negative and C positive status in 

White (15% and 68% respectively) than in Black or African American patients (8% and 27% 

respectively).
21

  Racial difference between the training and validation cohorts could also provide 

an explanation as all patients in the SCCRIP training cohort are Black or African American and 

84.6% of the patients in the SJLIFE validation cohort are White. It is possible that individuals 
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from different races may have slightly different sequencing coverage patterns, or the informative 

features used to identify and/or differentiate those alleles vary with race, for which future studies 

are warranted. Additional training using WES data from White individuals and individuals of 

other racial and ethical groups is needed to further improve RHtyper accuracy.  

 

 Clinical implementation of RHtyper may become increasingly relevant as more patients 

with chronic diseases are being interrogated by WES or WGS. It provides an analysis tool for 

data that may already exist or are obtained for other clinical care. RH genotyping can enhance 

transfusion safety by facilitating anti-Rh antibody identification and/or in some cases, improve 

prophylactic RBC matching strategies. For example, for patients with the hybrid alleles of 

RHD*01N.03 or RHD*DIIIa-CEVS (4-7)-D, RHCE*02.10.01 or RHCE*CeRN, which encode 

partial C antigen, and no conventional RHCE*Ce or RHCE*CE allele, we recommend 

transfusion with C negative RBCs to prevent anti-C formation.
26

 Genotyping blood donors, 

particularly frequent Black donors who support C/E/K-matched RBCs for patients with SCD, 

may facilitate RH genotype-matched blood transfusion and improve transfusion safety in the 

future. RHtyper achieved high concordance rates in two large validation cohorts after 

incorporating the machine learning models but was not 100% accurate. One limitation is that 

RHtyper may mis-predict RHCE*C and RHCE*c with WES data. Misidentification of RHCE*C 

as. RHCE*c may result in C positive patients receiving C negative blood, which would not cause 

any harm to the patient, but from a resource perspective, it would be poor allocation of C antigen 

negative units. Conversely, misidentification of RHCE*C as. RHCE*c in blood donors may 

result in exposing C negative recipients to C positive blood and potential anti-C formation. 

Therefore, the use of RHtyper for RH genotyping blood donors would need to be combined with 
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other testing such as standard serologic typing. For clinical application, additional training and 

validation using samples from multiple racial groups with RH genotypes verified by RH SNP-

array, Sanger sequencing, and other molecular methods as well as serological tests are essential 

to further optimize RHtyper predictions.  

 

There are limitations to our study. First, we used WGS-predicted genotypes by RHtyper 

as the reference. This seemed justified as we previously demonstrated that the WGS-predicted 

genotypes were highly accurate compared to genotypes verified by multiple molecular methods, 

and serological types for D and C/c antigens.
6
 Second, the SJLIFE cohort was only serologically 

typed for D antigen, and thus, concordance with C antigen typing was not possible. However, the 

prevalence of C antigen in White and Black or African American patients derived from WGS 

and WES data were consistent with known frequencies, indicating the genotyping results were 

likely accurate.
21

  

 

In conclusion, we optimized RHtyper for WES data by adding machine learning to 

overcome the variable sequencing coverage and misalignment associated with WES data. The 

optimization improved RH genotyping accuracy and extended the application spectrum of 

RHtyper to include the more widely available WES data.    
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Table 1. Discrepancies between WES-predicted genotypes and genotypes determined by RH 

SNV-array and PCR-based assays in a validation cohort with 56 SCD patients. 

Patient RH 
Allele 

RH SNV-array and 
PCR-based assays  

WES-predicted  
genotypes 

Confirmation 
methods 

1 D RHD*01 Same as left ⎼ 

D Deletion Same as left ⎼ 

CE RHCE*02  
(RHCE*Ce) 

RHCE*01  
(RHCE*ce) 

Serology 

CE RHCE*01.20.01 
(RHCE*ce733G) 

RHCE*01.20.02 
(RHCE*ce 48C, 733G) 

Serology 

2 D RHD RHD*10.00 
(RHD*DAU0)  

Sanger 
sequencing 

D RHD RHD*10.00 or 
(RHD*DAU0)  

Sanger 
sequencing 

CE RHCE*02 or 
RHCE*Ce 

Same as left ⎼ 

CE RHCE*01.20.01 
(RHCE*ce733G) 

RHCE*01.20.02  
(RHCE*ce 48C, 733G) 

Sanger 
sequencing  

3 D RHD*01 Same as left ⎼ 

D Deletion Same as left ⎼ 

CE RHCE*01  
(RHCE*ce) An extra RHCE 

c.105C>T identified 

Sanger 
sequencing 

CE RHCE*01.20.02 
(RHCE*ce 48C, 733G) 

Sanger 
sequencing 

4 D RHD*01 Same as left ⎼ 

D Deletion Same as left ⎼ 

CE RHCE*01  
(RHCE*ce) 

Same as left ⎼ 

CE RHCE*01  
(RHCE*ce) 

RHCE*01.01 
(RHCE*ce48C) 

Sanger 
sequencing 
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Figure legends  

Figure 1. Modification of RHtyper for WES data by adding machine learning. The WES-based 

RHtyper algorithm consists of four main steps: 1) variant profiling for SNPs/indels and coverage 

alterations; 2) predicting RHD zygosity and hybrid alleles, RHCE*C and RHCE*c, the zygosity 

of RHD c.1136C>T and RHCE c.48G>C by machine learning models; 3) refining the hybrid 

allele and hybrid breakpoint predictions using segmentation; 4) generating likelihood scores 

using genotypes and phased haplotype likelihoods to rank candidate allele pairs. Finally, the 

candidate allele pair with the highest likelihood scores is considered as the predicted genotype. 

WES, whole exon sequencing; BAM, binary alignment map; QC, quality control.  

 

Figure 2. Uneven sequencing coverage of RH genes by WES compared to WGS. Sequencing 

coverage is normalized by log2 transformation of the ratio between each exon and the sample’s 

average coverage. A value of “0” represents 2 copies.  Exons are differentiated by colors. Lines 

represent mean sequencing coverage. Shadows represent standard deviation.  

 

Figure 3. For the 396 SCD patients enrolled in the SCCRIP study, machine learning increased 

the overall concordance rates between WES- and WGS-predicted RH genotypes from 90.3% for 

RHD and 96.3% for RHCE (A) to 97.2% for RHD, 98.2% for RHCE (B). The number and 

percentage of concordant alleles and various types of discordant alleles are shown in parentheses.  

SNP, single nucleotide polymorphism.  

 

Figure 4. The modified RHtyper achieved high concordance rates between WES- and WGS-

predicted RH genotypes of 96.3% for RHD and 94.6% for RHCE in the SJLIFE cohort consisting 
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of 3030 cancer survivors. The number and percentage of concordant alleles and various types of 

discordant alleles are shown in parentheses.  SNP, single nucleotide polymorphism.  

 

Figure 5. Discordance rates of the trained SNPs/alleles among White and Black or African 

American patients in the SJLIFE study. NS represents non-significant; * represents p<0.05; **** 

represents p<0.001. 
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