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Abstract:
The transcription factor RUNX1 is a master regulator of hematopoiesis and is frequently mutated in
myeloid malignancies. Mutations in its runt homology domain (RHD) frequently disrupt DNA binding
and result in loss of RUNX1 function. However, it is not clearly understood how other RUNX1
mutations contribute to disease development. Here, we characterize RUNX1 mutations outside of the
RHD. Our analysis of patient datasets revealed that mutations within the C-terminus frequently
occur in hematopoietic disorders. Remarkably, most of these mutations were nonsense or frameshift
and predicted to be exempt from nonsense mediated mRNA decay. Therefore, this class of mutation is
projected to produce DNA-binding proteins that contribute to pathogenesis in a distinct manner. To
model this, we introduced the RUNX1R320* mutation into the endogenous gene locus and demonstrated
the production of RUNX1R320* protein. Expression of RUNX1R320* resulted in the disruption of RUNX1
regulated processes such as megakaryocytic differentiation through a transcriptional signature
different from RUNX1 depletion. To understand the underlying mechanisms, we utilized Global RNA
Interactions with DNA by deep sequencing (GRID-seq) to examine enhancer-promoter connections. We
identified wide-spread alteration of enhancer-promoter networks within RUNX1 mutant cells.
Additionally, we uncovered enrichment of RUNX1R320* and FOXK2 binding at the MYC super enhancer
locus, significantly upregulating MYC transcription and signaling pathways. Together, our study
demonstrates that most RUNX1 mutations outside the DNA binding domain are not subject to nonsense
mediated decay, producing protein products that act in concert with additional cofactors to
dysregulate hematopoiesis through mechanisms distinct from that induced by RUNX1 depletion.
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Abstract 36 

The transcription factor RUNX1 is a master regulator of hematopoiesis and is frequently 37 

mutated in myeloid malignancies. Mutations in its runt homology domain (RHD) frequently 38 

disrupt DNA binding and result in loss of RUNX1 function. However, it is not clearly understood 39 

how other RUNX1 mutations contribute to disease development. Here, we characterize RUNX1 40 

mutations outside of the RHD. Our analysis of patient datasets revealed that mutations within 41 

the C-terminus frequently occur in hematopoietic disorders. Remarkably, most of these 42 

mutations were nonsense or frameshift and predicted to be exempt from nonsense mediated 43 

mRNA decay. Therefore, this class of mutation is projected to produce DNA-binding proteins 44 

that contribute to pathogenesis in a distinct manner. To model this, we introduced the 45 

RUNX1R320* mutation into the endogenous gene locus and demonstrated the production of 46 

RUNX1R320* protein. Expression of RUNX1R320* resulted in the disruption of RUNX1 regulated 47 

processes such as megakaryocytic differentiation through a transcriptional signature different 48 

from RUNX1 depletion. To understand the underlying mechanisms, we utilized Global RNA 49 

Interactions with DNA by deep sequencing (GRID-seq) to examine enhancer-promoter 50 

connections. We identified wide-spread alteration of enhancer-promoter networks within RUNX1 51 

mutant cells. Additionally, we uncovered enrichment of RUNX1R320* and FOXK2 binding at the 52 

MYC super enhancer locus, significantly upregulating MYC transcription and signaling 53 

pathways. Together, our study demonstrates that most RUNX1 mutations outside the DNA 54 

binding domain are not subject to nonsense mediated decay, producing protein products that 55 

act in concert with additional cofactors to dysregulate hematopoiesis through mechanisms 56 

distinct from that induced by RUNX1 depletion. 57 

Introduction 58 

Hematopoiesis is a vastly complex process, involving many signaling pathways, intricate 59 

transcriptional programs, in addition to further epigenetic and RNA splicing regulation. At the top 60 
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of the hematopoietic hierarchy lie several master regulators which play critical roles throughout 61 

the proliferation and differentiation process. RUNX1 is among these master regulators and is 62 

required for definitive hematopoiesis1–4. 63 

Pathogenic mutations occur throughout RUNX1. Many mutations have been detected within the 64 

DNA-binding Runt homology domain (RHD) which disrupt protein binding to DNA and act as 65 

loss-of-function mutations. Outside of the RHD, mutations affect the regulatory regions located 66 

in the C-terminus of RUNX15–7. These mutations have been associated with sporadic 67 

MDS/AML8,9, increased risk of AML transformation in CMML patients10. Germline mutations in 68 

this region have also been identified as pathogenic drivers in familial platelet disorder with 69 

associated myeloid malignancy (FPDMM)11–13. 70 

Although C-terminal mutations in RUNX1 have been proven to be pathogenic, the underlying 71 

mechanisms of this class of mutation remain poorly understood in hematopoietic disorders. We 72 

revealed that the majority of C-terminal mutations are nonsense and frameshift mutations that 73 

are exempt from nonsense mediated mRNA decay (NMD). Furthermore, to understand the 74 

mechanisms and impacts of these C-terminal mutations, we generated an isogenic knock-in 75 

human cell line model of RUNX1R320* (RUNX1c notation is used in this study)13,14. Our studies 76 

established that RUNX1R320* does not elicit NMD and produces a truncated protein. We 77 

examined the effects of RUNX1R320* on transcription, DNA binding, and promoter-enhancer 78 

interactions using a combination of RNA-seq, ChIP-seq, and Global RNA Interactions with DNA 79 

followed by deep sequencing (GRID-seq). Our analysis revealed a RUNX1R320* transcriptional 80 

signature, which is distinct from that induced by RUNX1 depletion. Interestingly, although we 81 

detected similar genome-wide binding between RUNX1 and RUNX1R320*, we identified extensive 82 

remodeling of enhancer-promoter networks in RUNX1R320* cells. Analysis of RUNX1R320* 83 

regulated enhancer-promoter pairs detected significant enrichment of FOXK2 motifs, suggesting 84 

a novel role for FOXK2 at enhancers in conjunction with RUNX1R320*. At the MYC locus we 85 
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found that RUNX1R320* and FOXK2 both exhibit increased binding at hematopoietic MYC 86 

enhancers while RNA-seq detected significant MYC upregulation in RUNX1R320* cells. 87 

Collectively, we demonstrate that non-RHD RUNX1 mutants can produce proteins that do not 88 

act as simple loss of function and dysregulate hematopoiesis through distinct mechanisms and 89 

cofactor interactions. 90 

Methods 91 

A complete description of all methods is provided in the Supplementary Methods section. 92 

RNA-seq, ChIP-seq and GRID-seq of RUNX1 and RUNX1R320* cells 93 

RNA extraction was performed in triplicate using TRIzol (Invitrogen # 15596026) in accordance 94 

with manufacturer’s protocol, library preparation and sequencing was performed by Novogene. 95 

ChIP-seq samples were prepared as described previously15 with minor modifications using anti-96 

RUNX1 antibody from Abcam (#23980). GRID-seq libraries from RUNX1 WT and RUNX1R320* 97 

cells were prepared as previously described16,17. 98 

 99 

Results 100 

RUNX1 mutations outside the RHD are not subject to NMD and can produce DNA-binding 101 
products 102 

As a transcription factor, RUNX1 binds DNA through the runt homology domain (RHD) which 103 

lies within the N-terminal region of the protein. Pathogenic mutations detected within the RHD 104 

are frequently disrupt DNA binding and act to prevent RUNX1 function. However, the effects of 105 

mutations beyond the RHD remain poorly understood. We sought to investigate mutations 106 

beyond the RHD in more detail. To achieve this, we first assessed the distribution of 107 

hematopoietic RUNX1 mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) 108 

database14. We found that a significant portion of RUNX1 mutations (27%, n = 387) lie outside 109 
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the RHD and are distributed throughout the C-terminal region (Fig. 1A (top)). A high proportion 110 

of C-terminal mutations were revealed to be nonsense or frameshift (78.6%, 304 of 387) (Fig. 111 

1B (left)). This was in stark contrast to our analysis of N-terminal/RHD regions with frameshift 112 

and nonsense accounting for only 37.3% (384 of 1030) of mutations. RUNX1 germline 113 

mutations in the RUNX1db (RUNX1 Database) also showed a similar trend of C-terminal 114 

nonsense and frameshift mutations18. This led us to hypothesize that this disruption of the C-115 

terminus through frameshift or truncation was linked to the pathogenicity of these mutations and 116 

warranted further investigation. 117 

Mutations causing frameshifts and early termination codons typically elicit nonsense mediated 118 

decay (NMD) where the premature termination codons (PTCs) lead to transcript degradation. 119 

We reasoned that the high rate of C-terminal nonsense and frameshift mutations might either 120 

elicit NMD, causing RUNX1 haploinsufficiency, or be exempt from NMD, thus producing 121 

pathogenic protein variants. The mechanisms of NMD are well defined at the transcript level 122 

and enable NMD prediction19–22. Briefly, only premature termination codons in the last exon and 123 

within 50 nucleotides of exon-exon junctions will not be subject to NMD. In the context of the 124 

RUNX1 transcript, PTCs beyond residue 305 of 480 (RUNX1c NM_001754.5) are predicted to 125 

be exempt from NMD (Fig. 1A (bottom)). We found that the large majority (232 of 304; 76.3%) of 126 

C-terminal frameshift and nonsense mutations were predicted to be exempt from NMD and 127 

produce proteins (Fig. 1B (right)). Together, our analysis demonstrated the most common C-128 

terminal RUNX1 mutations are frameshift or nonsense (78.6%), and most of these mutations 129 

are projected to produce proteins with truncated or novel C-termini (76.3%), representing a 130 

class of pathogenic RUNX1 mutations distinctly different than those found within the RHD. 131 

Pathogenic mutation RUNX1R320* results in a truncated RUNX1 protein expressed at high 132 
levels 133 

To study C-terminal RUNX1 mutations we elected to generate a homozygous 134 
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knock-in of the pathogenic RUNX1R320* mutation (ClinVar: VCV000618862.12) 135 

using CRISPR-Cas9 technology in the K562 human leukemia cell line derived from 136 

a chronic myeloid leukemia patient at blast crisis (Fig. 1C, D). RUNX1R320* 137 

generates a premature stop codon predicted to be exempt from NMD mechanisms, 138 

representing the majority of C-terminal RUNX1 mutations in our analysis. The 139 

RUNX1R320* transcript was confirmed to produce a protein product via immunoblot 140 

(Fig. 1E). We observed a  2.37 fold increase in RUNX1R320* protein relative to wild-141 

type as well as increased transcript expression (Fig. 1F), which we hypothesize 142 

may be due to reported autoregulation of RUNX123. The remaining RUNX family 143 

members, RUNX2 and RUNX3 have been reported to compensate for RUNX1 144 

loss24–26. Although we detected a significant change in transcript expression of 145 

RUNX3, protein levels were barely detectable (Fig. S1A) which enabled us to study 146 

the effects RUNX1R320* as the predominate RUNX protein in our model. These data 147 

demonstrate that endogenous knock-in of RUNX1R320* is not subject to transcript 148 

degradation and results in the production of a truncated RUNX1 protein which is 149 

expressed at a level higher than wild-type RUNX1. 150 

Truncation of RUNX1 blocks megakaryocyte differentiation 151 

RUNX1 plays roles throughout hematopoiesis and has been well-described as an essential 152 

factor in megakaryocyte (MK) development as well as platelet production and function27–29. To 153 

investigate whether RUNX1R320* dysregulates K562 cells differentiation into megakaryocytes 154 

upon induction with 12-O-tetradecanoylphorbol-13-acetate (TPA)30, both RUNX1 and 155 

RUNX1R320* cells were treated with TPA and changes in cell morphology and surface markers 156 

were assessed after 48 hours. RUNX1 wild-type cells showed characteristic megakaryocytic 157 

differentiation upon TPA treatment including the appearance of large cells with lobated nuclei, 158 

however, RUNX1R320* cells produced dysplastic megakaryocyte-like cells which were smaller 159 
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with dyslobated nuclei (Fig. 2A). Undifferentiated K562 cells express CD235a, a maker 160 

presented on megakaryocytic-erythroid progenitors (MEPs) and lack the megakaryocytic 161 

lineage marker CD61. Upon TPA treatment RUNX1 wild-type cells lost CD235a and gained 162 

CD61, demonstrating megakaryocytic differentiation (Fig. 2B,C). RUNX1R320*  cells showed 163 

significantly less differentiation, confirming our results in Fig. 2A. Together, our data show that 164 

endogenous expression of RUNX1R320* results in partial megakaryocytic differentiation block.  165 

RUNX1R320* increases DNA damage sensitivity while evading apoptosis 166 

DNA damage as an oncogenic driver plays an important role in hematologic malignancies. 167 

RUNX1 aberrations have been shown to increase DNA damage 25,31–34. We next sought to 168 

examine whether endogenously expressed RUNX1R320* may affect these DNA damage 169 

pathways. We treated RUNX1 and RUNX1R320* cells with DNA damaging agent etoposide 170 

(ETOP) and assessed DNA damage sensing through γ-H2AX imaging (Fig. S1B). RUNX1R320* 171 

cells were significantly more sensitive to ETOP treatment compared to wild-type cells (Fig. 2D); 172 

similar results were observed upon camptothecin induced damage (data not shown). We 173 

hypothesized that RUNX1R320* induced DNA damage sensitivity may lead to increased 174 

apoptosis. Interestingly, extended etoposide treatment over 48 hours did not result in 175 

significantly increased apoptosis in RUNX1R320* cells relative to wild-type cells (Fig. S1C). 176 

Together, these results demonstrate that RUNX1R320* cells become sensitized to DNA damage 177 

while evading cell death via apoptosis and suggest DNA damage sensitivity as a pathogenic 178 

attribute of RUNX1 C-terminal mutants32. 179 

RUNX1R320* Causes Transcriptional Changes Distinct from RUNX1 Depletion 180 

Next, we sought to investigate the impact of RUNX1R320* on gene expression and disease 181 

pathways. RUNX1 influences gene expression through both direct DNA binding and protein-182 

protein interactions with an abundance of cofactors (reviewed in 1). As a transcriptional master 183 

regulator, mutations in RUNX1 lead to aberrant gene expression and we hypothesized that 184 
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RUNX1R320* may uniquely disrupt transcription as RUNX1R320* retains the DNA-binding RHD. 185 

RNA-seq followed by principal component analysis (PCA) clearly indicated RUNX1R320* samples 186 

generated different transcriptome signatures than that of wild-type RUNX1 samples (Fig. 3A). 187 

Subsequent differential expression analysis revealed 1,013 upregulated genes and 1,663 188 

downregulated genes (FDR ≤ 0.05; |log2FC| ≥ 1.5), demonstrating significant transcriptional 189 

reprogramming by RUNX1R320* (Fig. 3B). 190 

To elucidate how RUNX1R320* may alter transcription differently than RUNX1 RHD loss of 191 

function mutants we compared RUNX1R320* dysregulated genes to our previously generated 192 

RUNX1 knockdown RNA-seq dataset in K562 cells35 (Fig. 3C,S2A). Remarkably, the majority 193 

(74.63%) of genes dysregulated in RUNX1R320* were unique and not perturbed in RUNX1-194 

depleted cells. Furthermore, among this small subset of commonly dysregulated genes only 195 

62.0% of these overlapping genes were dysregulated in the same manner (both up or 196 

downregulated) between RUNX1R320* and RUNX1 depleted datasets. These data demonstrate 197 

that RUNX1R320* results in significant changes in transcription, dysregulating 2,676 genes and 198 

these represent a unique transcriptional signature that differs from that induced by RUNX1 199 

depletion. 200 

Truncation of RUNX1 dysregulates differentiation and oncogenic signaling pathways 201 

Exploring the distinct RUNX1R320* gene expression signature further, we performed 202 

overrepresentation pathway analysis on both our RUNX1R320* and RUNX1 KD datasets. In line 203 

with our observed phenotypic changes, we detected significant enrichment of pathways related 204 

to megakaryocyte and platelet function (Fig. 3D). These pathways relate to the known role of 205 

RUNX1 in hematopoietic disease as well as megakaryocyte differentiation and function27,29,36–38. 206 

We also performed gene set enrichment analysis (GSEA)39 and revealed negative enrichment 207 

of RUNX1 regulated megakaryocytic and hematopoietic stem cell differentiation gene sets in 208 

RUNX1R320* cells (Fig. 3E). We identified specific hematopoietic genes that were dysregulated in 209 
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RUNX1R320* cells using Reactome and gene ontology (GO) databases (Fig. S2B). Furthermore, 210 

several oncogenic pathways such as PI3K/AKT and MAPK signaling were uniquely enriched in 211 

our RUNX1R320* dataset (Fig. 3D). GSEA also uncovered enrichment of MYC oncogenic 212 

signaling (Fig. 3F). c-MYC, a well-established leukemogenic driver40–43, was significantly 213 

upregulated in RUNX1R320* cells (Fig. 3F,G). Together, these data suggest that RUNX1R320* 214 

disrupts key MK and HSC differentiation pathways while upregulating oncogenic signaling 215 

through the dysregulation of both unique genes and known RUNX1 targets. 216 

RUNX1 and RUNX1R320* exhibit similar DNA binding across the genome 217 

We demonstrated that RUNX1R320* dysregulates hematopoietic gene expression, including 218 

genes directly related to disease phenotypes (Fig. 3). As a master regulator, RUNX1 has been 219 

demonstrated to regulate gene expression through promoter and enhancer regulation as well as 220 

through chromatin remodeling30,42,44–46. We hypothesized that the transcriptional changes we 221 

observed in RUNX1R320* cells might result from a combination of altered DNA binding and 222 

changes in cofactor interactions.  223 

To explore changes between RUNX1 and RUNX1R320* DNA binding we performed ChIP-seq. 224 

Detailed peak annotation revealed that 39.8% of RUNX1 peaks were within promoter regions, 225 

29.8% intronic, 20.6% intergenic, 5.5% exonic, and 4.3% in 3’UTR and 5’UTR (Fig. 4A). Our 226 

findings are consistent with previously reported RUNX1 ChIP-seq datasets30,47 (Fig. S3A-D). As 227 

the RHD is retained in RUNX1R320*, we hypothesized that the loss of the C-terminus would 228 

dysregulate binding at a subset of RUNX1 sites through alterations in cofactor interactions and 229 

DNA binding may also be changed as regions of the C-terminus have been reported to have 230 

auto-inhibitory functions6,48. We first compared RUNX1 and RUNX1R320* ChIP-seq datasets and 231 

uncovered similar binding annotation patterns: 42.7% of RUNX1R320* peaks at promoter regions, 232 

27.5% intronic, 19.3% intergenic, and 5.6% exonic with the remainder 5’/3’ UTR and 233 

downstream accounting for 5.0% of peaks (Fig. 4B). Despite the increased expression of 234 
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RUNX1R320* (Fig. 1E), we found that the majority of peaks (50,596) were detected in both 235 

RUNX1 and RUNX1R320* datasets, demonstrating that both proteins exhibit similar genomic 236 

binding. We detected 1,061 sites of significantly downregulated RUNX1R320* binding while 129 237 

sites showed an increase in RUNX1R320* presence (Fig. 4C). These data suggest that RUNX1 238 

and RUNX1R320* bind similarly throughout the genome, displaying differential binding at a small 239 

subset of sites. These data also point toward further RUNX1R320* mediated gene regulation 240 

through altered interactions with co-activators/co-repressors, enhancers, and chromatin 241 

modifiers. 242 

Loss of the C-terminus of RUNX1 alters binding at enhancers 243 

To investigate RUNX1R320* transcriptional regulation at promoters we integrated our ChIP-seq 244 

and RNA-seq datasets to examine RUNX1 and RUNX1R320* bound genes (Fig. 4D). RUNX1R320* 245 

promoter binding was correlated with gene expression. However, as we detected RUNX1R320* 246 

binding beyond promoter regions, we hypothesized that additional regulatory elements played a 247 

role in the RUNX1R320* transcriptional changes that we observed. To annotate RUNX1R320* 248 

binding we divided the genome into 5 major categories: enhancers, promoters, transcribed 249 

regions, repressed regions, and heterochromatin using publicly available K562 histone 250 

modification ChIP-seq datasets (Fig. 4E)49,50. Both RUNX1 and RUNX1R320* differentially bound 251 

sites (Fig. 4E “up/down”) and shared sites (Fig. 4E “nc”) were enriched at promoter and 252 

enhancer regions. We conducted further analysis of RUNX1 motif density at differentially bound 253 

promoters and enhancers. Enhancers with altered binding were more strongly associated with 254 

the RUNX1 DNA binding motif relative to promoter regions (Fig. 4F). These analyses 255 

demonstrate that the RUNX1 C-terminal region is required for binding at a subset of RUNX1 256 

target sites and these dysregulated sites are strongly enriched for enhancer regions. 257 

Collectively, our data suggest a role for RUNX1R320* at enhancer regions in transcription 258 

regulation in addition to canonical promoter binding. 259 
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GRID-seq identifies extensive enhancer-promoter network remodeling in RUNX1R320* cells 260 

Enhancers have been shown to play critical roles in both normal and abnormal hematopoiesis 261 

41,51–54 and we hypothesized that RUNX1R320* may dysregulate critical enhancer-promoter 262 

connections based on our RNA- and ChIP-seq analyses. To uncover these connections, we 263 

employed Global RNA Interactions with DNA by deep sequencing (GRID-seq) to map genome-264 

wide RNA-DNA interactions and generated enhancer-promoter (E-P) network maps in RUNX1 265 

and RUNX1R320* cells16,17. GRID-seq detects RNA-DNA interactions using a bivalent linker to 266 

capture RNA and DNA molecules in close proximity. Nascent RNAs proximal to its endogenous 267 

promoter region as well as any associated enhancers are detected as enhancer-promoter pairs 268 

(Fig. 5A). 269 

We separated GRID-seq interactions into “local”, “cis”, and “trans” interactions. RNA is most 270 

likely proximal to the DNA it is transcribed from, typically the gene body, these interactions we 271 

define as “local”. Beyond the gene body, “cis” interactions are between RNA and DNA regions 272 

within the same chromosome and are most likely to represent enhancer-promoter pairs while 273 

“trans” interactions are interchromosomal. As shown in Fig. 5B, local interactions are the most 274 

readily detected followed by cis interactions. Trans interactions are significantly more rare and 275 

typically weaker by orders of magnitude55,56. Generally, chromosomal interactions follow power 276 

law scaling enabling mathematical modeling for probability of DNA contacts, described in detail 277 

by Lieberman-Aiden et al. and others52,57. Our GRID-seq datasets successfully recapitulated 278 

these findings (Fig. 5C) and allowed us to apply this model to GRID-seq detected local, cis, and 279 

trans interactions, ranking them and generating a Z-score scale in RUNX1 and RUNX1R320* 280 

cells. Examining cis interactions between RUNX1 and RUNX1R320* datasets, we detected 281 

30,365 interactions unique to RUNX1 and 32,903 RUNX1R320* specific interactions with 52,089 282 

occurring in both (Fig. 5D). E-P pairs that were up and down regulated in RUNX1R320* cells were 283 

correlated with respective increases and decreases in gene expression (Fig. S3E). Furthermore, 284 
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our data revealed extensive interaction remodeling at differentially expressed hematopoietic and 285 

platelet gene loci such as KIT, DIAPH1, NFE2, and STIM1 (Fig. S4A-D). Together our GRID-286 

seq dataset in combination with ChIP-seq and gene expression analysis establishes that 287 

RUNX1R320* broadly alters enhancer-promoter networks leading to significant transcriptional 288 

dysregulation. 289 

RUNX1R320* and FOXK2 enrichment at enhancers and MYC regulation 290 

We hypothesized that RUNX1R320* may remodel enhancer-promoter networks through cofactor 291 

interactions either gained or lost upon the truncation of the RUNX1 C-terminus. RUNX1R320* 292 

specific enhancer-promoter pairs were examined for cofactor motifs. Using this approach, we 293 

successfully detected enrichment of the RUNX motif in addition to ETS1/PU.1, factors known to 294 

cooperate with RUNX1 at enhancers and promoters. We also identified forkhead box (FOX) 295 

family motifs as significantly enriched at RUNX1R320* regulated E-P pairs, including those shared 296 

with RUNX1 (Fig. 5E). FOX proteins are a large family of DNA binding factors which play a 297 

variety of roles throughout different lineages, including enhancer regulation58–60. We next asked 298 

which FOX proteins were expressed in our leukemia model. We determined that the FOXK 299 

subfamily had the significantly higher expression in both RUNX1 wild-type and RUNX1R320* cells 300 

(Fig. 5F). FOXK2 but not FOXK1 showed co-occupancy at RUNX1 sites in ENCODE datasets 301 

(Fig. S5A). Furthermore, FOXK2 and RUNX1 protein interaction network analysis also revealed 302 

shared overlapping proteins (Fig. S5B). Together, our analyses suggest a role for FOXK2 at 303 

RUNX1R320* regulated enhancer-promoter networks. 304 

To further explore the potential role of FOKX2 at RUNX1R320* bound enhancers we examined 305 

the well-described RUNX1-bound MYC super enhancer locus, where we detected significant E-306 

P remodeling in GRID-seq (Fig. 6A) and upregulation of MYC and MYC signaling (Fig. 3F,G). 307 

RUNX1 has been reported to bind element 3 (E3) of the BENC (Blood ENhancer Cluster) super 308 
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enhancer42,43,61,62. We theorized that RUNX1R320* may dysregulate or hijack this super enhancer 309 

to affect MYC expression in conjunction with FOXK2 in the context of our model.  310 

To build upon RUNX1 WT ENCODE H3K27ac and FOXK2 data and  assess the presence of 311 

these factors in RUNX1R320* cells at MYC enhancer loci we performed Cleavage Under Targets 312 

& Release Using Nuclease (CUT&RUN)63 followed by qPCR in RUNX1 and RUNX1R320* cells. 313 

We confirmed RUNX1 binding at E3 and detected significantly higher RUNX1R320* binding at this 314 

enhancer (Fig. 6B). FOXK2 binding at E3 was also significantly increased in RUNX1R320* cells 315 

(Fig. 6C). The SWI/SNF component BRG1 has been suggested to play an activating role at 316 

MYC enhancer regions61, however, we detected no significant change in BRG1 binding at E3 317 

between RUNX1 WT and RUNX1R320* cells (Fig. S6A). We also observed increased RUNX1R320* 318 

and FOXK2 binding at the NOTCH-bound MYC enhancer (N-Me) (Fig. S6B, C). However, 319 

H3K27ac signal was not present in this region indicating the potential requirement for additional 320 

cofactors for N-Me activation.  321 

To further investigate the effect of FOXK2 on MYC expression we performed shRNA mediated 322 

FOXK2 knockdown (Fig. 6D). The level of c-MYC was significantly reduced in both WT and 323 

RUNX1R320* cells upon FOXK2 knockdown relative to a non-targeting shRNA control (Fig. 6E 324 

and Fig. S6D, E). Together, these data suggest a potential role for FOXK2 in RUNX1R320* 325 

mediated enhancer-promoter networks as well as the upregulation of MYC and MYC oncogenic 326 

signaling via the BENC super-enhancer (Fig. 6F).  327 

Discussion  328 

In this work we study how RUNX1 mutations outside the runt homology domain promote 329 

abnormal hematopoiesis. We reveal that mutations in the C-terminus of RUNX1 are mainly 330 

nonsense or frameshift and remain largely exempt from NMD, producing mutated proteins 331 

capable of DNA binding. We note that frameshift mutations may result in novel C-termini but 332 

focus on the effects of the retained portion of RUNX1 in this study. Modeling this class of 333 
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mutation through endogenous gene editing and expression of RUNX1R320*, we detected a 334 

unique gene expression signature that differs from that induced by RUNX1 depletion. This 335 

suggests that the truncation of the RUNX1 C-terminus does not function simply as a loss of 336 

function mutation. We demonstrate that this aberrant transcriptional program contributes to 337 

disease phenotypes including megakaryocytic differentiation block and disruption of 338 

hematopoietic and oncogenic pathways. Upon further investigation, we uncovered remodeling 339 

of enhancer-promoter networks in RUNX1R320* cells using GRID-seq. Analysis of altered E-P 340 

pairs revealed significant enrichment of the FOX transcription factor motif that led us to examine 341 

FOXK2. Our results suggest a novel potential role for FOXK2 and RUNX1R320*in the alteration of 342 

enhancer-promoter networks leading to dysregulated hematopoiesis. 343 

Our work investigates the RUNX1 C-terminus which has been shown to harbor pathogenic 344 

mutations across hematologic malignancies, yet these mechanisms remain incompletely 345 

understood. These mutations retain the DNA-binding RHD and therefore exhibit binding to 346 

RUNX motifs. Previous in vitro studies suggest that the C-terminus of RUNX1 contains multiple 347 

intramolecular inhibitory regions that impair DNA binding6,48,67. Interestingly, our ChIP-seq data 348 

show that RUNX1 and RUNX1R320* bind to DNA similarly. We hypothesize that our study reflects 349 

an endogenous context where cofactor complexes act to closely regulate RUNX1 DNA binding. 350 

Furthermore, RUNX1 frequently interacts with other hematopoietic transcription factors to co-351 

regulate critical genes (reviewed in68). Additionally, RUNX1 interacts with DNA in the context of 352 

chromatin looping and interacts with both cohesin complex subunit STAG244 and multiple 353 

chromatin remodelers such PRC161,69 and SWI/SNF43 complexes. Our data suggests that in an 354 

endogenous environment RUNX1 DNA binding is modulated through interactions with a 355 

combination of factors, which culminates in similar RUNX1 and RUNX1R320* binding on a 356 

genome-wide scale. Further studies are required to unravel the combinatorial influences behind 357 

RUNX1R320* DNA binding at target sites. 358 
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Additionally, the loss of the multi-functional carboxy-terminus of RUNX1 removes two highly 359 

conserved RUNX family domains, the nuclear matrix targeting signal (NMTS) and the terminal 360 

VWRPY domain. Independent of DNA-binding, the NMTS has been reported to be critical for 361 

subnuclear localization and cooperation with PU.1, a critical hematopoietic transcription 362 

factor70,71. We hypothesize that mislocalization of RUNX1R320* alters its subnuclear availability 363 

and interactions with nuclear matrix factors resulting in unique transcriptional perturbations. 364 

Furthermore, the conserved VWRPY domain, essential for megakaryopoiesis and HSC 365 

maturation72, binds the TLE1 corepressor and represses RUNX1 activity7,73. Lacking TLE1 366 

binding may allow RUNX1R320* to act as an activator at a subset of sites typically repressed by 367 

full-length RUNX1, a hypothesis supported by our transcriptome analysis. Taken together, we 368 

reason that the truncation of RUNX1 alters its subnuclear localization and ability to interact with 369 

various cofactors, resulting in unconventional RUNX1R320* complexes and transcriptional 370 

dysregulation of hematopoietic pathways.  371 

Upon the truncation of RUNX1 enhancer-promoter networks are significantly distorted. At 372 

dysregulated E-P pairs we found significant enrichment of the forkhead box (FOX) DNA binding 373 

motif shared among FOX family members. A large family of 44 conserved transcription factors, 374 

FOX proteins act to regulate transcription through both direct DNA binding and cooperation with 375 

lineage specific factors. Of the 14 subfamilies, the FOXK family, which consists of FOXK1 and 376 

FOXK2, was most highly expressed in our leukemia model. Although FOXK2 is understudied in 377 

the hematopoietic system and unlike FOXK1, ENCODE datasets suggest RUNX1 and FOXK2 378 

DNA binding sites frequently overlap. Previous studies depict a bivalent role for FOXK2, 379 

activating and repressing transcription in a context dependent manner74–76. Our data suggest 380 

that the loss of the C-terminus of RUNX1 may allow further cooperation between FOXK2 and 381 

RUNX1R320* which act to regulate a subset of enhancer-promoter connections such as the 382 

BENC MYC super-enhancer.  383 
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In summary, we establish that RUNX1 C-terminal variants consist mostly of nonsense and 384 

frameshift mutations which are largely exempt from nonsense mediated decay and lead to the 385 

production of truncated RUNX1 proteins. These proteins dysregulate hematopoietic 386 

transcriptional programs in a manner that is distinct from RUNX1 depletion. Upon further 387 

investigation we show that the loss of the domains in the C-terminus of RUNX1 results in the 388 

remodeling of enhancer-promoter networks where we uncover a potential role for FOXK2 in 389 

cooperation with RUNX1R320* in enhancer regulation. 390 
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Figure 1: C-terminal RUNX1 mutations are frequently frameshift and nonsense resulting 657 
in transcripts which are exempt from nonsense mediated decay. 658 

(A) Lollipop plot of hematopoietic mutations in RUNX1 (isoform 1c NP_001754.2) in the 659 
COSMIC database with accompanying transcript exons displayed (top). Truncating mutations 660 
include nonsense, nonstop, frameshift deletion, frameshift insertion, splice site. In-frame 661 
deletions and in-frame insertions are considered in-frame mutations, and all other non-missense 662 
mutations are labeled as “Other.” Enlarged region of exon 7 and 8 of RUNX1 denoting NMD 663 
exempt mutations (bottom). Mutations which result in a premature stop codon in the final exon 664 
(exon 8) or within 50 nucleotides upstream of the last exon-exon junction (exon 7-8) are 665 
predicted to be exempt from nonsense mediated decay (NMD). (B) Analysis of C-terminal 666 
RUNX1 mutations beyond the Runt homology domain (RHD). Frameshift and nonsense 667 
mutations represented 304 of 387 mutations (78.55%) while all other in frame mutations 668 
consisting of missense, in frame insertions and deletions, coding silent substitutions, and 669 
compound substitution combined account for 83 of 387 mutations (21.45%). NMD analysis was 670 
performed on the 304 frameshift and nonsense mutations, examining premature stop codons 671 
within the region defined in Fig. 1A. A total of 76.3% (232 of 304) C-terminal frameshift and 672 
nonsense mutations were predicted to exempt from NMD. (C) Schematic of RUNX1 protein 673 
domains and knock-in R320* mutation using CRISPR-Cas9. (D) Sanger sequencing of 674 
RUNX1R320* homozygous knock-in mutation compared to wild-type RUNX1 sequence. K562 675 
cells were nucleofected with Cas9, RUNX1 targeting gRNA, and R320* donor template. The 676 
gRNA (black underline) targeted exon 7 (isoform 1c NM_001754.5) and donor oligo template 677 
results in TAA codon from TCG at R320. Single cell clones were screened for homozygous 678 
mutations, confirmed by sequencing of the targeted region, and analyzed by ICE tool by 679 
Synthego. (E) Western blot of wild-type (WT) RUNX1 and RUNX1R320* K562 cells along with β-680 
actin loading control. Both lines were subjected to the same nucleofection process +/- CRISPR-681 
Cas9 editing components. Whole cell lysate was extracted and used to confirm the presence of 682 
both wild-type and RUNX1R320* proteins, densitometry calculations were performed using β-actin 683 
normalization. The arrow indicates a possible non-specific signal. (F) RUNX1 transcript levels in 684 
RUNX1 wild-type and RUNX1R320* cells and RUNX family members as measured by DESeq2 685 
analysis software package. Each line subjected to RNA-seq and sampled in triplicate (n = 3), 686 
Students t-test was used, significance: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001. 687 

Figure 2: RUNX1R320* results in differentiation block and increased DNA damage 688 
sensitivity. 689 

(A) Representative images of RUNX1 wild-type and RUNX1R320* cells treated with DMSO or 10 690 
nM TPA for 48 hours. Differentiating cells are denoted with arrows. (B-C) Representative flow 691 
cytometry analysis of RUNX1 wild-type and RUNX1R320* K562 cells which were treated with 692 
DMSO, 5 nM TPA for 48 hours. Megakaryocyte marker CD61 (integrin β3 chain) was analyzed 693 
along with the erythroid marker CD235a (glycophorin A). Live cells were divided into four groups 694 
using FACS diva software based on the presence (+/-) of CD61 and CD235a. DMSO treated 695 
control cells were compared to TPA treated cells in both RUNX1 wild-type and RUNX1R320* 696 
genotypes (n = 3). Significance was determined using two-way ANOVA. (D) DNA damage 697 
levels in RUNX1 wild-type and RUNX1R320* cells upon treatment with etoposide (ETOP) and 698 
camptothecin (CPT) relative to DMSO control. Cells were treated with 25 µM ETOP or CPT for 1 699 
hour at 37°C before fixation and staining. DAPI was used to identify the nuclei of cells and 700 
γH2AX mean signal intensity was measured per cell within the nucleus. Student’s t-test was 701 
used to determine significance. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001. 702 
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Figure 3: RUNX1R320* results in significant transcriptional dysregulation of 703 
megakaryocytic differentiation pathways and MYC targets. 704 

(A) Principal component analysis of RUNX1 wild-type (n = 3) and RUNX1R320* (n = 3) RNA-seq 705 
samples following analysis using DESeq2. (B) Volcano plot showing differentially expressed 706 
genes between RUNX1 wild-type and RUNX1R320* cells. Genes were considered significantly 707 
differentially expressed (red) with FDR ≤ 0.05 and fold-change ≥ ±1.5). (C) Comparison of 708 
differentially expressed genes between RUNX1R320* and RUNX1 knockdown experiments. 709 
RUNX1R320* cells were compared to RUNX1 wild-type controls and RUNX1 shRNA knockdown 710 
cells to shRNA control cells in triplicate. Both datasets were analyzed with DESeq2 with 711 
significance determined by FDR ≤ 0.05 and fold-change ≥ ±1.5. (D) Reactome pathway analysis 712 
of genes differentially expressed genes in RUNX1R320* and RUNX1 knockdown cells described 713 
in (A-C). Pathways were considered significant with p-value < 0.05. (E-F) GSEA enrichment 714 
results between wild-type and RUNX1R320* RNA-seq datasets, NES = normalized enrichment 715 
score. (G) MYC expression in RUNX1 and RUNX1R320* cells via RNA-seq. Student’s t-test was 716 
used to determine significance: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001. 717 

Figure 4: RUNX1R320* differential binding is most enriched at enhancer regions. 718 

(A-B) Annotation of RUNX1 and RUNX1R320* binding site using ChIPSeeker annotation to the 719 
hg38 genome for all peaks. Wild-type peaks = 40,679; RUNX1R320* peaks = 38,233. (C) 720 
Differential binding volcano plot between RUNX1 wild-type and RUNX1R320* ChIP-seq datasets, 721 
significantly upregulated binding shown in (red) and downregulated binding (blue) comparing 722 
R320*/WT. (D) Analysis of gene expression in RUNX1R320* cells relative to RUNX1 WT at genes 723 
with RUNX1 promoter binding. (E) Enrichment of RUNX1R320* peaks genome-wide using 724 
ENCODE K562 annotation data across up, nc (no change), and downregulated binding relative 725 
to RUNX1 WT. H3K27ac, H3K4me1, H3K4me3, H3K27me3, and H3K9me3 were used to 726 
annotate enhancers, promoters, transcribed regions, repressed regions, and heterochromatin 727 
respectively. (F) RUNX1 motif presence across enhancers and promoters with up or 728 
downregulated binding of RUNX1R320* relative to RUNX1. 729 

Figure 5: GRID-seq reveals extensive remodeling of enhancer-promoter connections in 730 
RUNX1R320* cells. 731 

(A) Representative heat map of the GRID-seq dataset detecting RNA association with DNA 732 
regions across chromosome 21, only interactions within chromosome 21 are shown. (B) Z-score 733 
of detected RNA-DNA interactions classified as local, cis, and trans. Local interactions 734 
represent nascent RNA interaction with the gene body, cis interactions are within the same 735 
chromosome and outside the gene body region, and trans interactions are interchromosomal. 736 
(C) RNA-DNA interaction density across distance after log transformation demonstrating the 737 
power law model of DNA looping and interaction described in Lieberman-Aiden et al. (D) 738 
Enhancer-promoter interactions identified solely in either RUNX1 wild-type (WT) or RUNX1R320* 739 
(R320*) cells or present in both (shared) as detected in GRID-seq.  (E) Motif analysis of 740 
RUNX1R320* regulated enhancer and promoter regions in (D), selected significantly enriched 741 
motifs shown. (F) Normalized read counts of forkhead box gene expression in K562 RUNX1 742 
wild-type and RUNX1R320* cells via RNA-seq. Each bar represents the mean of three replicates 743 
and standard deviation. FOXK1 and FOXK2 subfamilies were measured against the remaining 744 
FOX subfamilies using one-way ANOVA. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001 745 
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Figure 6: FOXK2 cooperates with RUNX1R320* to regulate MYC. 746 

(A) Analysis of K562 H3K27ac (ENCODE ENCFF465GBD), FOXK2 (ENCODE 747 
ENCFF286IOU), RUNX1 wild-type and RUNX1R320* binding at MYC and MYC enhancer regions 748 
up and downstream of MYC (top). GRID-seq long-range interaction map of chromatin 749 
associated RNAs at the MYC locus (bottom). Interaction strength with a greater score between 750 
RUNX1 or RUNX1R320* denoted in blue and red respectively. (B-C) CUT&RUN qPCR analysis of 751 
FOXK2, RUNX1, and RUNX1R320* at MYC BENC enhancer element 3 ‘E3’. (D-E) Western blots 752 
examining FOXK2 and MYC protein levels in wild-type (WT) RUNX1 and RUNX1R320* cells 753 
transduced with non-targeting shCtl or FOXK2 shRNAs with β-actin loading control. (F) Model 754 
describing the role of RUNX1R320* and FOXK2 in MYC enhancer regulation. Student’s t-test was 755 
used to determine significance: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001. 756 
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