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In BTK, phosphorylated Y223 in the SH3 domain mirrors catalytic
activity, but does not influence biological function
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Key Points

• In publications on BTK
and its inhibitors,
phosphorylation of
tyrosine 223 is often
considered necessary
for complete catalytic
activity.

• We gene-edited mice
substituting tyrosine
223 for
nonphosphorylatable
phenylalanine and
found no difference
from wild-type animals.
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Bruton’s tyrosine kinase (BTK) is an enzyme needed for B-cell survival, and its inhibitors

have become potent targeted medicines for the treatment of B-cell malignancies. The initial

activation event of cytoplasmic protein-tyrosine kinases is the phosphorylation of a

conserved regulatory tyrosine in the catalytic domain, which in BTK is represented by

tyrosine 551. In addition, the tyrosine 223 (Y223) residue in the SRC homology 3 (SH3)

domain has, for more than 2 decades, generally been considered necessary for full

enzymatic activity. The initial recognition of its potential importance stems from

transformation assays using nonlymphoid cells. To determine the biological significance of

this residue, we generated CRISPR-Cas–mediated knockin mice carrying a tyrosine to

phenylalanine substitution (Y223F), maintaining aromaticity and bulkiness while

prohibiting phosphorylation. Using a battery of assays to study leukocyte subsets and the

morphology of lymphoid organs, as well as the humoral immune responses, we were

unable to detect any difference between wild-type mice and the Y223F mutant. Mice

resistant to irreversible BTK inhibitors, through a cysteine 481 to serine substitution

(C481S), served as an additional immunization control and mounted similar humoral

immune responses as Y223F and wild-type animals. Collectively, our findings suggest that

phosphorylation of Y223 serves as a useful proxy for phosphorylation of phospholipase Cγ2
(PLCG2), the endogenous substrate of BTK. However, in contrast to a frequently held

conception, this posttranslational modification is dispensable for the function of BTK.
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Introduction

The cytoplasmic protein-tyrosine kinase BTK is essential for the development of B lymphocytes in
humans1,2 because inherited variations cause X-linked agammaglobulinemia (XLA). This disease is
characterized by an essential absence of mature B-cell lineage cells and a lack of humoral immune
responses. Moreover, inhibitors of BTK represent a new and highly successful paradigm for targeted
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therapies for leukemias and lymphomas.3-5 This makes the under-
standing of BTK’s signaling properties a very important topic in
hematology.

BTK is involved in transferring signals from the B-cell receptor
(BCR) to activate development in the bone marrow and effector
functions of B cells in the perifery.1,2 In humans, this process is
already crucial at the pro-B to pre-B transition.6,7 In mice, the
importance of BTK was first realized when the cause of the x-linked
immunodeficiency (xid) phenotype was identified as a missense
variation in the N-terminal, pleckstrin homology (PH) domain of
BTK.2,8 This replacement results in the exchange of an arginine
residue for a cysteine impairing membrane translocation. The cor-
responding variation in humans causes XLA,9 demonstrating that
there are species differences, with the xid phenotype being mild
compared with XLA.

The signal transduction activity of BTK is complex, but phosphor-
ylation of phospholipase Cγ2 (PLCG2) is an essential ingredient,
with PLCG2 being considered the key substrate of BTK.10-12 Like
all other cytoplasmic protein-tyrosine kinases, BTK is activated by
transphosphorylation of the tyrosine 551 residue (Y551) in the
kinase domain, altering the structure and promoting enzymatic
activity. A key question has been whether additional tyrosine (Y)
phosphorylations of BTK contribute to its activity. In addition,
serine/threonine phosphorylations of BTK are also involved in its
metabolism, including degradation.11,13-15

In 1996, Owen Witte’s laboratory reported that Y223 represents
an autophosphorylation site in BTK. Exchanging Y223 for the
aromatic residue phenylalanine (F), which cannot be phosphory-
lated, in the SH3 domain of BTK and combining this alteration with
the substitution of glutamic acid 41 for lysine in the PH domain
potently enhanced BTK’s transforming activity in NIH 3T3 fibro-
blasts.16 This study was followed by the analysis of pY551 and
pY223 in stimulated B lymphocytes.17 Based on the finding that
upon activation some BTK molecules were either phosphorylated
on Y551 or on Y223 or on both sites, it was proposed that there is
a sequential phosphorylation of Y551 followed by Y223 and sub-
sequent dephosphorylation of pY551 followed by pY223. Func-
tionally, pY223 did not enhance kinase activity but was
hypothesized to have a regulatory function related to the confor-
mation of BTK.17 Although the effects of pY223 in NIH 3T3 cells
and in B lymphocytes were dramatically different, the 2 publications
have become highly influential with regard to the concept of how
BTK is regulated.18 Thus, in spite of no evidence for a 2-step
potentiation of BTK’s catalytic activity, a very large number of
subsequent scientific reports anyway state that for BTK to become
fully activated, BTK first needs to be phosphorylated on Y551
(pY551) in the kinase domain and subsequently on Y223 (pY223)
in the SH3 domain.

Although pY551 is caused by phosphorylation exerted by SRC-
family kinases, especially LYN in B lymphocytes,19-21 pY223 is
achieved through transautophosphorylation, in which 1 molecule of
BTK phosphorylates another. Although the functional importance
of SH3 domain phosphorylation remains elusive, similar auto-
phosphorylations have also been identified among other kinases
belonging to the BTK family.22 To date, only this family of cyto-
plasmic tyrosine kinases has been shown to carry a tyrosine that
can be phosphorylated in the SH3 domain.
1982 ESTUPIÑÁN et al
As determined by 3-dimensional nuclear magnetic resonance
(NMR) spectroscopy, Y223 was found to be located on the sur-
face of the SH3 domain and therefore readily accessible for
posttranslational modifications.23 However, the question remains
whether the pY223 transautophosphorylation is accidental and
unimportant or essential for what is often referred to as full acti-
vation of BTK. Although many publications state that this is the
case, there are 2 observations that argue against this possibility. In
1997, it was reported24 that the BCR-induced, impaired calcium
mobilization in the BTK-defective DT40 chicken B lymphoma cell
line was restored upon transfer of a construct in which Y223 was
replaced by the unphosphorylatable aromatic residue phenylala-
nine (Y223F). In contrast, a construct with the same substitution at
position 551 in BTK did not restore calcium mobilization, demon-
strating the essential role of the later tyrosine for BCR-mediated
signaling.24 Furthermore, in 2003, Rudolf Hendriks’ laboratory
reported on Y223F transgenic mice, in which BTK was expressed
from a CD19 promoter.18 In their study, it was shown that almost all
features of BTK-deficient mice were corrected using this trans-
gene, except for a slightly reduced number of λ light-chain–
expressing B lymphocytes. However, despite the strong evidence
above suggesting that phosphorylation of Y223 has no functional
consequence, many researchers still consider both Y551 and
Y223 phosphorylations to be essential for BTK to become fully
activated. To finally resolve this issue, we have generated BTK
Y223F knockin mice, which do not suffer from the criticism that
could apply for transgene systems owing to copy number variations
and insertions into new chromosomal sites.

Materials and methods

Animal studies

The Y223F mutation was introduced into exon 8 of the mouse Btk
gene (Ensembl gene ID: ENSMUSG00000031264 and NCBI
gene ID: 12229) using CRISPR/Cas9-mediated gene editing (via
zygote injection) with a specific single guide RNA and an oligo-
nucleotide (DNA template) carrying the modifications to be intro-
duced. The targeting strategy was based on NCBI transcript
NM_013482.2. The sgRNA was designed to be unique in
GRCm38/mm10 (all potential off-target sequences had ≥2 mis-
matches). Mice were generated and maintained on C57BL/6
background. Analyzed Y223F mice and wild-type controls were
sex- and age-matched. Experiments were performed on 7- and 22-
week-old mice. Auto-antibody analysis was performed on 14- to
16-month-old animals. All experiments were approved by the local
ethics committee.

Flow cytometry

Filtered (70 μm nylon filter) cell suspensions from dissected and
crushed organs (bones, spleen, and thymus) were prepared in
phosphate-buffered saline (PBS) with 2% fetal calf serum (FCS).
Peripheral blood cells were obtained after red blood cells (RBC)
were removed and lysed by using 1% dextran and 0.8% NH4Cl,
respectively.

Prepared cells were Fc-blocked using anti-CD16/32 (BD Bio-
sciences) and stained with fluorochrome-conjugated antibodies as
previously described.25 Staining procedure and antibody panels
were used as previously described.26 Dead cell discrimination was
performed using propidium iodide. Data were acquired on a
23 APRIL 2024 • VOLUME 8, NUMBER 8



D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/8/8/1981/2222903/blooda_adv-2024-012706-m

ain.pdf by guest on 04 M
ay 2
fluorescence-activated cell sorting FACSAria IIu (BD Biosciences)
and analyzed using Flowjo 9.9.6 (FlowJo).

Immunofluorescence

Spleens and lymph nodes were frozen in cryostat medium (Bio-
Optica, Milan, Italy) and cut into 8-mm-thick sections by using a
cryostat microtome. Slides were acetone-fixed and blocked with
5% goat serum (Dako Cytomation, Fort Collins, CO) in PBS.
Staining was performed overnight at 4◦C with fluorophore-
conjugated and biotinylated antibodies, and sections were
washed and incubated with the fluorophore-conjugated strepta-
vidin for 1 hour at room temperature. ProLong Diamond Antifade
Mountant (Thermo Fisher Scientific) was used for mounting the
slides. Data were acquired with the confocal microscope (Zeiss
LSM880) and recorded with LSM Image software, as previously
described.25

Histology

Spleen, liver, kidney, and lung were harvested, fixed in 4% neutral
buffered formalin, and routinely processed for histology. Four μm
thick paraffin sections were obtained and stained with hematoxylin-
eosin (HE) for histopathological examination.

Enzyme-linked immunosorbent assay

For detection of IgM, IgG, IgG1, IgG2b, and IgG3, NP30-BSA
plates were incubated with diluted serum, then AP (alkaline
phosphatase)-conjugated goat antibody to mouse IgM (1021-04;
SouthernBiotech), IgG (1030-04, SouthernBiotech), IgG1 (1071-
04, SouthernBiotech), IgG2b (1091-04, SouthernBiotech), and
IgG3 (1100-04; SouthernBiotech) were incubated separately for 1
hour at room temperature and developed with phosphatase sub-
strate (S0942-200TAB, Sigma). Results were measured at 405 nm
and 620 nm with a Bio-Rad microplate reader.

Immunizations

For immunization with a T-cell independent (TI) antigen, mice were
injected intravenously with 50 μg NP-Ficoll (F-1420-100; Bio-
search Technologies) in a volume of 100 μL in PBS. Seven days
after immunization, blood was collected from the ventral tail artery.

For immunization with a T-cell–dependent (TD) antigen, mice
received an intraperitoneal injection with 100 μg NP-CGG (N-
5055D-5; Biosearch Technologies) mixed with 100 μL Inject alum
(77161, Thermo Scientific). Three weeks after the primary immu-
nization, mice were boosted with 50 μg NP-CGG intravenously.
Seven days after the first and booster immunization, blood was
collected from the ventral tail artery.
NH2

wild-t
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Figure 1. Overview of the wild-type and Y223F mouse

Btk locus after CRISPR-Cas9–mediated gene editing.

The Y223F substitution was introduced into exon 8 of the Btk

gene using CRISPR-Cas9–mediated gene editing. Additional

silent mutations were introduced to create an Afel restriction

site (AGCGCT) for analytical purposes and to avoid further

editing of the locus. The sequence of the single guide RNA

(sgRNA, green), silent point mutations (red), position of

amino acid 223 (grey), and the introduced Afel site (yellow)

are indicated.
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Western blot analysis

Isolated splenocytes were starved in serum-free Iscove’s modified
Dulbeco’s medium (IMDM) with 50 μM β-mercaptoethanol (Gibco,
Life Technologies) for 1 hour. Subsequently, B lymphocytes were
activated for 5 minutes at room temperature with H2O2 (4 mM) and
anti-mouse IgM (10 μg/mL, 1022-01, Southern Biotech). Genera-
tion of whole-cell lysates and immunoblotting analysis were per-
formed as previously.25,27 The antibodies used for western blotting
were anti-actin (A5441, Sigma-Aldrich), anti-BTK (270-284,
Sigma-Aldrich), anti-BTK pY551 (24a/BTK, BD Biosciences), anti-
BTK pY223 (EP420Y, Abcam), anti-PLCG2 (Rabbit polyclonal,
Biotech), and anti-PLCG2 pY753 (polyclonal, Abcam). The sec-
ondary antibodies, goat anti-mouse 800CW, goat anti-rabbit
800CW, goat anti-mouse 680LT, and goat anti-rabbit 680, were
purchased from LI-COR Biosciences GmbH, Lincoln, NE, USA.
Odyssey Imager from LI-COR Biosciences GmbH was used for
membrane scanning, and the signals of total and phosphorylated
proteins were quantified by NIH ImageJ 1.52a.

All experiments were approved by the local animal experimentation
ethics committee, ID 1679. Mice were generated and maintained
on C57BL/6 background. Analyzed Y223F mice and controls were
sex- and age-matched. Experiments were performed on 7- and 22-
week-old mice. Auto-antibody analysis was performed on 14- to
16-month-old animals.
Results

To determine the biological importance of Y223 for BTK’s activity,
we generated a CRISPR-Cas9 knockin mouse model in which
Y223 was replaced by the nonphosphorylatable, aromatic,
phenylalanine residue in the exon 8 of the mouse Btk gene
(Figure 1). The tyrosine-ATA codon was exchanged for the
phenylalanine-TTT codon to generate the Y223F substitution;
additional silent mutations were introduced to avoid further Cas9
activity and to generate an Afel restriction site for analytical pur-
poses (Figure 1).

Mice lacking the Y223 phosphorylation site in BTK

show normal B-cell development and maturation

We first aim to evaluate whether replacement of Y223 affects
B-cell development. B-cell progenitors from bone marrow (BM) and
peripheral B cells from the peritoneal cavity (PeC) and spleen (Sp)
were analyzed by flow cytometry (Figure 2A-C). No significant
differences were found in the distribution of the B-cell subsets from
the different tissues, suggesting that phosphorylation at Y223 is
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Figure 2. Tyrosine 223 to phenylalanine substitution in BTK does not affect B-cell development in bone marrow or peripheral B-cell subsets in spleen and

peritoneal cavity. (A-C) (left) Gating strategy for identification of indicated B-cell subsets. Prior gating was performed as indicated above the fluorescence-activated cell sorting

plots. Propidium iodide (PI) was used for dead cell discrimination. (A-B) (right) Absolute numbers of total B cells and B-cell subsets in bone marrow (BM) and spleen. (C) (right)

Frequency of subsets within B cells in the peritoneal cavity (PeC). In (A-C) (right), each dot represents data from individual animals, vertical bars indicate mean and 2-tailed

Mann-Whitney test was used to calculate significance. Immature B cell (immB); mature B cell (matB); transitional 1 B cell (T1); transitional 2 B cell (T2); marginal zone B cell (MZ);

follicular B cell (FoB); switched B cell (Sw). None of the comparisons yielded any significant difference.
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dispensable for BM B-cell development and peripheral B-cell
maturation (Figure 2A-C).

The distribution of κ- and λ-light chain fractions was also assessed
in different B-cell subsets from BM and Sp. A tendency of enriched
κ-chain fraction was observed in immature and mature B-cell
populations from BM; however, after applying multiple test com-
parison with Sidak-Bonferroni correction (alpha: 0.05), we
confirmed the difference only in immature B cells (Figure 3A). This
finding was not observed in the analyzed B cells from Sp, sug-
gesting that if there really is a difference, normalization of the κ- and
λ-light chain frequencies occurs during development (Figure 3B).

To extend these findings, peripheral B-cell and T-cell spatial dis-
tribution was evaluated by immunofluorescence in Sp and lymph
nodes (LN). Well-defined B-cell and T-cell areas were found within
the follicular structure, and no noticeable changes in white and red
pulp were observed in the Sp when comparing Y223F knockin and
wild-type control mice (Figure 4A, right). Normal structure and
spatial distribution of B-cell and T-cell areas were also found in LN
from both genotypes (Figure 4A, left). Taken together, this shows
that Y223F substitution has no detectable effect on B-cell devel-
opment, including their distribution in peripheral lymphoid organs.
1984 ESTUPIÑÁN et al
Lack of Y223 phosphorylation does not affect kinase

activity upon stimulation of the B-cell receptor

Each B cell expresses a unique BCR,28,29 which, upon stimulation,
initiates a cascade of secondary events that activates LYN, a SRC-
family kinase that transphosphorylates the Y551 residue in BTK,
leading to enhanced catalytic activity.30,31 This is followed by
transautophosphorylation of the Y223 residue, in which 1 BTK
molecule phosphorylates another. This scenario was proposed as
crucial for BTK activation and, consequently, for its biological
effect.17 Activated BTK phosphorylates phospholipase C-γ2
(PLCG2), which catalyzes the hydrolysis of phosphatidylinositol
4,5-bisphosphate to inositol triphosphate and diacylglycerol at the
cell membrane. This leads to the activation of protein kinase Cβ
(PKCβ) and downstream transcription factors involved in the
regulation of B-cell proliferation, differentiation, migration, and
survival.32-34

Here, we evaluated endogenous BTK’s catalytic activity by western
blotting after ex vivo anti-IgM stimulation. We measured the
phosphorylation of Y551 (pY551) as an indicator of BTK’s initial
activation and pY223 and pY753-PLCG2 as measures of BTK’s
catalytic activity. As expected from the amino acid substitution,
23 APRIL 2024 • VOLUME 8, NUMBER 8
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pY223 was not found in Y223F B cells (Figure 4B). In contrast,
phosphorylation of Y551 was similar in both Y223F and wild-type
mice (Figure 4B). No significant differences were obtained from
the comparison of the Y753-PLCG2 phosphorylation status
between the genotypes (Figure 4B). Together, this indicates that
absent Y223-BTK phosphorylation does not interfere with BTK’s
catalytic activity.

Y223F mice display no alterations in hematopoietic

progenitors or non–B-lineage leukocytes

After finding that BTK function, B-cell maturation and distribution
appear to be normal in Y223F mice, we set out to determine by
flow cytometry whether the substitution affected the development
of early lymphoid progenitors, T-cell subsets, and non–B-cell
BTK-expressing cell populations. We found no differences in the
number of hematopoietic stem cells, lymphoid-primed multipotent
progenitors, or common lymphoid progenitors (supplemental
Figure 1A) in BM of Y223F mice. Moreover, we found no signifi-
cant differences in thymic T-cell progenitors (supplemental
Figure 1B) nor in the CD4+ and CD8+ T-cell subsets from Sp
and peripheral blood (PB) (supplemental Figure 2A-B). Similarly, no
significant changes were identified in macrophages, granulocytes,
dendritic cells, and natural killer cell numbers in Sp and PB
23 APRIL 2024 • VOLUME 8, NUMBER 8
when comparing Y223F and wild-type animals (supplemental
Figure 2A-B).

Y223F and C481S knockin and wild-type mice show

comparable levels of serum antibodies upon

immunization with T-cell–dependent and

–independent antigens

To assess B-cell function and ability to efficiently mount in vivo
antigen-specific T-cell–dependent and –independent responses,
we measured levels of serum immunoglobulins upon NP-CGG and
NP-Ficoll immunization (Figure 5) in wild-type and Y223F mice. As
an additional control group, we included mice carrying an edited
BTK gene (C481S) resistant to irreversible BTK inhibitors.26 In line
with the results obtained for the analyzed B-cell populations, similar
IgG1 and IgG3 subclass levels were observed in all 3 genotypes at
baseline and after either NP-Ficoll or NP-CGG immunization
(Figure 5A-B). We observed a significantly higher IgM response
upon immunization and higher IgG2b levels at baseline (Figure 5A-
B). Furthermore, upon immunization with either T-cell–independent
type II NP-Ficoll or T-cell–dependent NP-CGG antigens, no dif-
ferences in other antibody responses were found in C481S or
Y223F mice when compared with wild-type animals (Figure 5A-B).
Similar to Y223F animals, a tendency toward higher IgG2b levels
pY223 DOES NOT INFLUENCE BTK BIOLOGICAL FUNCTION 1985
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was observed in C481S mice before and after immunization, but
there was no statistically significant difference when corrected for
multiple testing (Figure 5A-B).

Old Y223F mice displayed no significant phenotypic

changes when compared with wild-type mice

Dysregulation of B-cell activation could lead to the development of
natural polyreactive antibodies with affinity for DNA and induce
autoimmune disease caused by deficient B-cell tolerance check-
points in aged mice.35 We therefore quantified levels of anti-DNA
reactivity in 14- to 16-month-old mice and did not find significant
differences in Y223F mice when compared with wild-type controls
(Figure 6A). Further studies that included histopathological analysis
were also performed for the lung, spleen, kidney, and liver
(Figure 6B; supplemental Figure 3-7; Table 1). Certain changes are
known to be acquired over time, but no differences in the type or
severity of the lesions were observed or associated in the presence
of the Y223F substitution. Histological findings such as splenic and
pulmonary hyperplasia, hepatic macrovesicular or microvesicular
lipidosis, or renal tubule degeneration were considered age-related
incidental lesions and found in both Y223F and wild-type mice
(Figure 6B; supplemental Table 1). This indicates that there is no
particular finding associated with the Y223F genotype that leads to
1986 ESTUPIÑÁN et al
differences in polyreactive antibody production or to the early onset
of pathologies associated with aging.

Discussion

A detailed understanding of BTK’s intracellular signaling is of
particular importance in the field of hematology, given the success
of inhibitors of BTK for the treatment of leukemia and lymphoma.
Using a Y223F knockin mouse, we found no phenotypic differ-
ences among multiple parameters, including the usage of the κ-
and λ-light chains in B-cell lineage from Sp, as compared with
normal wild-type littermates. In contrast, phosphorylation of the
Y223 residue, as noted by us and many other investigators, cor-
relates well with BTK-induced phosphorylation of its major sub-
strate, PLCG2, making it a useful readout for activated BTK.

The previous, comprehensive work on transgenic Y223F mice,
support the idea that pY223 is not necessary for the activation of
BTK. In these transgenic mice, a large number of phenotypes were
completely normalized, with the exception of the mentioned, slightly
reduced number of B lymphocytes using the λ light chain.18 The
reason for the discrepancy regarding the λ-light chain phenotype is
unknown, but in contrast to the knockin mice, the transgenic strains
express BTK from the CD19 promoter. It should also be noted that,
23 APRIL 2024 • VOLUME 8, NUMBER 8
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as opposed to knockin mice, transgenic mice normally integrate
various copy numbers of the transgene, and, moreover, the chro-
mosomal location for the integration may affect the expression.
Hence, in the reported transgenic Y223F strains,18 5 different lines
were generated with the corresponding BTK expression levels in
pro/pre-B, immature B, and mature cells varying considerably,
making the readout complex.

Another observation of importance relates to patients with XLA.
Since 1995, a mutation repository, BTKbase, has been collecting
all mutations causing XLA, and the most recent update was pub-
lished in 2023.36 Substitutions in the SH3 domain are highly
underrepresented as compared with all other domains,36 and this
may be related to the fact that SH3 domains in ABL and SRC
kinases have a negative regulatory role,37-39 with the possibility that
23 APRIL 2024 • VOLUME 8, NUMBER 8
this is also the case for BTK. In contrast, an exon deletion affecting
the SH3 domain causes XLA.40 Moreover, among the 1025 unique
mutations reported to date, out of which 40.8% are missense
mutations, none substitutes the Y223 residue in the SH3 domain
for another amino acid. Although this does not disprove the idea
that pY223 plays a role in the activation of B lymphocytes, it aligns
with the idea that this residue is tolerant to replacements, although
those causing instability of the protein are expected to cause XLA.
In contrast, substitution of Y551 is a known variation that causes
XLA with reported replacements to both asparagine (N) and his-
tidine (H).36,41,42

A limitation of this project is that we are studying mice because it is
known that in this species, variations in the Btk gene cause milder
phenotypes as compared with humans. Thus, the final proof would
pY223 DOES NOT INFLUENCE BTK BIOLOGICAL FUNCTION 1987
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be the detection of a Y223 substitution variation in humans and
whether this causes any phenotype. To this end, in the recently
released gnomAD mutation repository, in the v4 data set
(GRCh38), which spans 730 947 exome sequences and 76 156
whole-genome sequences from unrelated individuals of diverse
ancestries, there is a reported substitution of Y223 for cysteine
(https://gnomad.broadinstitute.org/gene/ENSG00000010671
?dataset=gnomad_r4).43 This mutation was found in a female,
1988 ESTUPIÑÁN et al
and we cannot exclude that it could cause manifest disease in
males. However, since this repository is not collecting patients
with XLA, this finding is in line with our observations.

In conclusion, we believe that the concept of Y223 being of
importance for the activation of BTK should be repudiated. The
initial observation that Y223 plays a role in a heterologous fibro-
blast in vitro system and the idea that this would be of importance
23 APRIL 2024 • VOLUME 8, NUMBER 8
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also for BCR signaling is not supported by previous studies of
chicken B cells or of primary B lymphocytes in transgenic mice.
We have now taken this a step further by studying our knockin
model with its introduced point mutation. Taken together with the
fact that there are no reported replacements of Y223 in more than
1000 unrelated XLA families, this strongly argues against the
concept that phosphorylation of Y223 promotes activation of
BTK. In contrast, similar to all other cytoplasmic protein-tyrosine
kinases, phosphorylation of Y551 in the kinase domain is essen-
tial for the activation of BTK. Given the great importance of BTK
as a therapeutic target, we believe that it is crucial to understand
the role of tyrosine phosphorylations for its enzymatic activity, and
our findings strongly suggest that phosphorylation of Y223 is not
essential for activity but remains a useful marker for BTK’s cata-
lytic activity.
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