
Submitted 19 October 2023; accepted 23
Blood Advances First Edition 5 February 2
March 2024. https://doi.org/10.1182/blooda

The scRNA-seq data that support the findings
Gene Expression Omnibus (accession numb

All data are available upon reasonable reques
Suda (csits@nus.edu.sg) and Chong Yang (

REGULAR ARTICLE

9 APRIL 2024 • VOLUME 8, NUMBER 7
Deciphering the regulatory landscape of murine splenic response to
anemic stress at single-cell resolution
D

Chong Yang,1 Rui Yokomori,1 Lee Hui Chua,1 Shi Hao Tan,1 Mun Yee Koh,1 Haruhito Totani,1 Takaomi Sanda,1 and Toshio Suda1,2

1Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and 2International Research Centre for Medical
Sciences, Kumamoto University, Kumamoto, Japan
ow
nloaded from

 http://ashpublications.net/bloodadvances/article-pdf/8/7/1651/2220735/b
Key Points

• Distinct developmental
phases and a
“hiatus” quiescent
subpopulation were
identified in emerging
erythroid cells under
anemic stress.

• CD81, identified as a
novel marker for central
macrophages in
erythroblastic islands,
is functionally required
for combating anemic
stress.
lood
Stress erythropoiesis can be influenced by multiple mediators through both intrinsic and

extrinsic mechanisms in early erythroid precursors. Single-cell RNA sequencing was

conducted on spleen tissue isolated from mice subjected to phenylhydrazine and serial

bleeding to explore novel molecular mechanisms of stress erythropoiesis. Our results

showed prominent emergence of early erythroblast populations under both modes of

anemic stress. Analysis of gene expression revealed distinct phases during the development

of emerging erythroid cells. Interestingly, we observed the presence of a "hiatus"

subpopulation characterized by relatively low level of transcriptional activities that

transitions between early stages of emerging erythroid cells, with moderate protein

synthesis activities. Moreover, single-cell analysis conducted on macrophage populations

revealed distinct transcriptional programs in Vcam1+ macrophages under stress. Notably, a

novel marker, CD81, was identified for labeling central macrophages in erythroblastic

islands (EBIs), which is functionally required for EBIs to combat anemic stress. These

findings offer fresh insights into the intrinsic and extrinsic pathways of early erythroblasts’

response to stress, potentially informing the development of innovative therapeutic

approaches for addressing anemic-related conditions.
a_adv-2023-011965-m
ain.pdf by guest on 06 M

ay 2024
Introduction

Steady-state erythropoiesis produces mature red blood cells (RBCs) at a constant rate, however,
stressors such as hemolysis and bleeding may cause disruption of erythrocytes production, termed as
stress erythropoiesis.1 Under these conditions, erythroid output is increased to compensate for the loss
of their production, and alternative stress erythropoiesis pathways are activated.2

Spleen has been identified as the primary site for stress erythropoiesis in mice.3 Early studies on how
the body responds to acute haemolytic anemia caused by the administration of phenylhydrazine (PHZ)
showed that in mice, the steady-state erythroid progenitors originated from bone marrow (BM) migrated
to the spleen and differentiated there in response to the increased levels of erythropoietin (EPO) in the
blood.4 In adult mice, bone morphogenetic protein 4 (BMP4) and hedgehog signaling have been shown
to stimulate the expansion of erythroid progenitor cells in response to acute anemia.5 Despite this
knowledge, our understanding of the intrinsic development, expansion, and differentiation of these
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Figure 1. Dynamics of splenic erythroid regeneration in response to PHZ and bleeding stress. (A) Schematic illustration of the experiment to generate PHZ- and

BLD-induced stress erythropoiesis models. (B-C) Peripheral blood analysis in mice treated with PHZ (B) or BLD (C) at various time points. Triangle indicates the time point chosen

for subsequent analyses. (D) Comparison of spleen morphology under normal conditions, PHZ and bleeding (n = 2). (E) Histological examination (using hematoxylin and eosin

staining) of spleen tissue from mice under normal, PHZ, and bleeding conditions. (F) Schematic illustration of experiment to analyze single cell transcriptomes. (G) UMAP

visualization of pooled scRNA-seq data from normal, PHZ, and bleeding conditions, with annotations of 9 subpopulations. (H) UMAP visualization of 9 annotated subpopulations

from normal, PHZ, and bleeding spleen tissues respectively. (I) Dot plot showing feature genes of each annotated subpopulations. HCT, hematocrit; HGB, hemoglobin; NK,

natural killer; NT, no treatment.
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emerging splenic erythroid populations remains limited. To address
this, we conducted a detailed analysis of these erythroid pre-
cursors at single-cell resolution.
1652 YANG et al
Furthermore, erythroid precursors reside within a specialized niche
known as erythroblastic islands (EBIs), in which they are in close
association with central macrophages. EBI macrophages transport
9 APRIL 2024 • VOLUME 8, NUMBER 7
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iron and secrete cytokines to support erythroblast survival and
differentiation, while also acting as phagocytes to degrade nuclei
of erythroblasts during enucleation.6,7 Despite decades of
research into EBIs, the molecular mechanisms of their function
during anemic stress are still not fully understood, including
erythroid-macrophage interactions and central macrophage
functions.

To fill these important gaps in the understanding of the molecular
mechanisms that are both cell-intrinsic and cell-extrinsic in the
spleen’s response to anemic stress, we mapped the transcriptomic
landscape of erythroid precursors/erythroblasts and their EBI
macrophage niches in spleen tissue isolated from mice under PHZ
and serial bleeding (BLD) stress. Our analysis decoded the tra-
jectory of these erythroid precursors under anemic stress and
identified CD81 as a novel surface marker for central EBI macro-
phages, and more importantly, CD81 blockade impeded erythroid
recovery, implying a crucial role of CD81 in overcoming anemic
stress.

Collectively, our findings unravel the intricate interplay between
cell-intrinsic and -extrinsic pathways in early erythroblasts’
response to stress and may open new avenues for the develop-
ment of innovative therapeutic approaches.
9 APRIL 2024 • VOLUME 8, NUMBER 7
Methods

Mice

Mice were in a C57/BL6 background and used for experiments at
age 8 to 12 weeks. All mice were maintained under experimental
protocols approved by institutional animal care and use commit-
tees under the National University of Singapore.

PHZ treatment and serial blood withdrawal

As described previously,8 to generate acute hemolytic anemia,
mice were intraperitoneally injected with 40 ug/g per mice of PHZ
(114715, Sigma-Aldrich). To generate BLD-induced anemic stress,
400 to 500 uL of peripheral blood was obtained from the sub-
mental vein of the mice for 3 consecutive days.

Single-cell library construction and sequencing

Spleen tissues were isolated simultaneously from steady state,
PHZ- and BLD-treated mice. Cell viability was evaluated using
trypan blue and a hemocytometer. Samples were prepared for
target capture of 10 000 cells. Single cells were subjected to the
Chromium Instrument (10× Genomics) to generate single-cell gel
beads in emulsion, followed by complementary DNA synthesis,
amplification, and library construction using the Chromium Single
Cell 3′ Reagent Kit v3 (10× Genomics, CA) according to the
manufacturer’s instructions. The final library was amplified and
sequenced using the P5 and P7 primers in a DNA nanoball
sequencing at BGI Genomics.

Statistical analysis

Statistical significance was calculated using 2-tailed unpaired t
tests as indicated in the figure legends. Statistical significance
is represented using the following symbols: P > .05, ns; P ≤ .05*;
P ≤ .01**; P ≤ .001***; P ≤ .0001****.
Results

Dynamics of erythroid recovery from PHZ- and

BLD-induced anemic stress

To gain a thorough understanding of the spleen’s response to
anemic stress, we used 2 mouse models of experimentally induced
anemia: PHZ-induced hemolytic anemia and BLD-induced anemia
(Figure 1A). To determine the ideal time points for synchronizing
the collection of spleen tissue samples for subsequent analysis, we
evaluated the dynamics of erythroid recovery under PHZ and
bleeding stress conditions, respectively. In mice treatment with
PHZ, peripheral blood RBC, hemoglobin, and hematocrit declined
to minimum levels ~3 days after treatment (Figure 1B). In contrast,
the BLD model showed that the most severe anemia occurred
1 day after the last blood withdrawal (Figure 1C). As a result, we
selected 2 days after the occurrence of the most severe anemia
state as the time point for synchronizing the collection of spleen
tissue samples for single-cell transcriptomic analysis in both
models (ie, day 5 in the case of PHZ-induced anemia and day 6 in
the case of BLD-induced anemia; Figure 1B and C).

Under such conditions, both anemia models exhibited varying
degrees of splenomegaly, as observed morphologically
(Figure 1D). Additionally, both models showed a decrease in
SINGLE-CELL ATLAS OF MURINE SPLEEN DURING STRESS 1653
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reticulocyte/RBC and an increase in early erythroid progenitor
populations (gating strategy9; supplemental Figure 1A and B).

Histological staining displayed a reduction in the white pulps and a
surge in red pulps in the spleen tissues of mice treated with PHZ
and BLD compared with steady state, although the distribution of
these changes differed between the 2 models (Figure 1E). With
the aim of gaining a deeper understanding of these differences and
uncover the underlying molecular mechanisms, we conducted
transcriptome analysis of spleen tissue samples subjected to
different stress conditions at the single-cell level.

Single-cell transcriptomic profiling of murine spleen

erythroid progenitors and their microenvironment

We next conducted single-cell RNA-sequencing (scRNA-seq) on
spleen tissue samples collected from mice in steady state, as well
as mice subjected to PHZ-induced anemia and BLD (Figure 1F).
After normalization and filtering, our data set comprised tran-
scriptomes from a total of 15 819 cells (supplemental Figure 1C).
Manifold approximation and projection (UMAP) revealed the
diversity of splenic cell populations. We next used curated gene
signatures from murine BM cells to annotate the UMAP clusters.10

Cells from clusters 0, 2, 6, and 17 exhibit the most prominent levels
of hemoglobin subunit genes (Hba-a1 and Hbb-bs), indicating the
presence of late erythroblasts or mature erythrocytes. Subse-
quently, cells from cluster 1, 3, 4, 5, 8, 10, 14, 16, and 25 shows
relatively high expressions of hemoglobin subunit genes. In
contrast, the expressions of progenitor genes (Kit, Gata1, and Klf1)
are at their peaks among these clusters, indicating the presence of
9 APRIL 2024 • VOLUME 8, NUMBER 7
hematopoietic stem and progenitor cells and erythroid precursors.
Moreover, it is important to note that the F4/80 (Adgre1) pan-
macrophage marker is only expressed in cluster 19 and 22.
These clusters also display high levels of Cd74 and Sirpa, indi-
cating the presence of monocyte/macrophage populations
(Figure 1G-I; supplemental Figure 1D). Notably, erythroid pro-
genitors are absent in the steady state spleen tissue samples but
become prominent during PHZ- and BLD-induced anemia
(Figure 1H), hence, from this point on, they will be referred to as
“emerging erythroid cells.”

Subpopulations in emerging erythroid cells exhibit

distinct transcriptional programs

In order to understand the role of each subgroup of emerging
erythroid cells during stress and to study their differentiation tra-
jectories, we reclassified the 9 clusters into 5 groups based on
their general gene expression patterns as observed from the heat
map clustering (Figure 2A-C and Supplemental Figure 2A). The
groups (1-5) exhibit distinct gene expression patterns (Figure 2D).
Gene ontology (GO) analysis was performed via Enrichr11-13 to
investigate the biological processes of the differentially expressed
genes (DEGs) in each group. The analysis revealed that Group_1
has a high enrichment of genes involved in protein synthesis and
translation, and Group_3 and Group_4 show high enrichment of
genes associated with mitotic cell division and the cell cycle related
functions, whereas Group_5 has high expression of genes
responsible for protein ubiquitination and regulation of transport
(Figure 2E).
SINGLE-CELL ATLAS OF MURINE SPLEEN DURING STRESS 1655
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It is worth mentioning that Group_2 has very few uniquely
expressed genes and, thus, did not show up in the GO analysis
(Figure 2E). Upon closer examination, it was observed that
Group_2 shares a relatively similar gene expression pattern with
Group_1, albeit with much lower expression levels. Interestingly,
we discovered that several crucial regulators of erythropoiesis,
including Tal1, Runx1, Lmo2, Foxo3, and Klf3, are expressed at
extremely low levels in Group_2, indicating a temporarily tran-
scriptionally quiescent state (Figure 2F and 2G). The relatively low
expression of genes related to cell division and growth, including
E2f2, Btg2, and Rb1, implies a possible cessation of cellular pro-
liferation (Figure 2F and 2G and supplemental Figure 2C). In
contrast, Group_2 exhibited moderate expression of ribosomal
subunit genes and genes involved in protein synthesis after
Group_1 (Figure 2F, 2G and Supplemental Figure 2C). In addition,
Group_2 exhibited moderate but distinctive expression of CD52
compared with other groups (Figure 2F and 2G). CD52 is widely
recognized as a marker of immune cells, but it is also mildly
expressed in early erythroid progenitors, as evidenced by Gene
Expression Commons data sets14 (supplemental Figure 2B),
although its function in this cell population is still unknown.

Of note, Group_2’s transcriptional quiescence raises the notion of a
"hiatus" concept, which refers to a temporary gap, pause, or inter-
ruption in a sequence or process. The appearance of this subgroup
during stress erythropoiesis prompts the need to functionally char-
acterize the concept of “hiatus” in subsequent sessions.

Uncovering the differentiation trajectory of emerging

erythroid cells

Then we investigated the differentiation trajectory of erythroid
populations and identified a developmental pathway that starts with
Group_1/2, progresses to Group_3/4, then to Group 5, and finally
culminates in the generation of mature erythrocytes (Figure 3A-C).
Given the overall similarity of gene signatures between Group_1/2,
as well as Group_3/4, we reorganized the 5 groups into 3 distinct
stages (Stage_1-3) (Figure 3D). GO analysis on the DEGs in each
stage uncovered that these erythroblasts initiate protein synthesis
during Stage_1, subsequently progress to mitotic cell division
during Stage_2, and finally reach Stage_3 in which protein ubiq-
uitination takes place (Figure 3G; supplemental Figure 4A-C).
Interestingly, the distribution of cells across Stage_1 to Stage_3 is
correlated with their cell cycle status. Specifically, a majority of S
phase cells were found in Stage_1, whereas Stage_2 had the
highest proportion of M phase cells, and G1 phase cells were
predominant in Stage_3 (Figure 3E-F; supplemental Figure 2D).
Hence, there is an interplay between the cells’ biological functions
and their distribution across different cell cycle stages.

To verify this finding, we analyzed specific genes across the
pseudotime axis. We observed that genes responsible for protein
Figure 3. Emerging erythroid cells exhibit functionally distinct stages along the

pseudotime. (B) Violin plot showing the distribution of pseudotime in all initial erythroid cell p

erythroid differentiation as indicated by the arrows along various erythroid populations. (D)

pooled scRNA-seq data. (E) UMAP visualization of the various stages of cell cycle in the p

phases (G1, S, and G2M) of pooled spleen cells from different stages. (G) Dot plot demon

and 3, respectively. (H) Expressions of selected genes in all erythroid populations along th
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synthesis and translation (Ybx1, Rpl32, Eif4a1, and Eef1a1) show a
gradual increase along the pseudotime trajectory, whereas genes
involved in proliferation and mitotic cell division (Mki67, E2f2,
Smc2, and Cdk1) have peak expressions in the middle of the axis.
Additionally, we found that genes associated with ubiquitination
(Ubb, Ube2h, and Ube2b) display upregulation toward the end of
the trajectory axis (Figure 3H and supplemental Figure 4A-C).

These results collectively suggest that splenic emerging erythro-
blasts exhibit a stepwise progression pattern in preparation for
erythrocyte production to combat anemic stress.
A temporary “hiatus” population resides between

early stages of emerging erythroid cells

The discovery of the “hiatus” subpopulation during stress erythro-
poiesis highlights the importance of functionally characterizing this
concept. One notable finding is that the weight percentage of
different groups differs significantly between PHZ and BLD con-
ditions, with the “hiatus” Group_2 population being more prevalent
in the BLD stress condition than in the PHZ condition (Figure 4A
and 4B).

More importantly, the detection of CD52 as a marker for the “hia-
tus” subpopulation allows for the functional characterization of this
concept. Our flow cytometry analysis indicated that CD52 is pre-
dominantly expressed in the Ery I and II population, while being
almost undetectable in the Ery III population, under both PHZ and
BLD conditions. Subsequently, based on CD52 expression levels,
we further subdivided the Ery I+II population into CD52hi and
CD52lo erythroblasts (Figure 4C and 4F). By using the OP-Puro
protein synthesis assay, we determined that CD52hi cells within
the Ery I+II population function as intermediates between the
CD52lo Ery I+II and Ery III populations (Figure 4D and 4G). This
discovery is in line with the expression patterns observed for pro-
tein synthesis/translation signatures in scRNA-seq and quantitative
polymerase chain reaction validations for the “hiatus” populations
(Figure 2F and 2G; Figure 4E and 4H; and supplemental
Figure 2C).

To gain a comprehensive understanding of the characteristics
associated with the “hiatus” subpopulation, we isolated 2 distinct
groups of early erythroblasts: CD52hi and CD52lo Ery I pop-
ulations. These isolated populations were subsequently cultured
in vitro (Figure 4I). Notably, the CD52hi labelled early erythroblasts
exhibited significantly reduced levels of adenosine triphosphate
content and proliferative capacity, as assessed by the CellTiter-Glo
Luminescence assay (Figure 4J and 4K). This finding suggests that
the CD52hi subpopulation operates in a relatively lower energy
state than their CD52lo counterparts. Furthermore, as a conse-
quence, the CD52hi early erythroblasts displayed compromised
differentiation trajectory. (A) UMAP plot of erythroid cell populations colored by

opulation clusters. (C) Pseudotime trajectory analysis demonstrating the directions of

UMAP visualization of the 3 regrouped stages in the emerging erythroid cells in the

ooled scRNA-seq data. (F) Bar graph showing the proportions of different cell-cycle

strating the enrichment analysis (GO biological processes) of DEGs from stages 1, 2,

e pseudotime axis.
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Figure 4. “Hiatus” subpopulation resides between early stages of emerging erythroid cells. (A) UMAP visualization of Group_1 to Group_5 in emerging erythroid

cells under PHZ and bleeding conditions, respectively. (B) Pie chart (left) and bar graph (right) showing the proportions of each group in PHZ and BLD conditions, respectively.
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Figure 4 (continued) (C) Representative gating strategy of CD52lo high and CD52lo Ery I+II and Ery III fractions within splenic early erythroblasts during bleeding stress. (D)

Protein synthesis rate, as determined by OP-Puro incorporation, of the indicated erythroblast populations (CD52hi and CD52lo Ery I+II and Ery III) under bleeding stress. (E) mRNA

expression of Gata1, Tal1, Klf1, Nfe2, Abcb10, and Rpl28 isolated from CD52lo and CD52hi Ery I+II and Ery III populations under bleeding stress. Error bars indicate the standard

error of the mean (SEM) for 3 independent experiments. (F) Representative gating strategy of CD52lo high and CD52lo Ery I+II and Ery III fractions within splenic early

erythroblasts during PHZ stress. (G) Protein synthesis rate, as determined by OP-Puro incorporation, of the indicated erythroblast populations (CD52hi and CD52lo Ery I+II and

Ery III) under PHZ stress. (H) mRNA expression of Gata1, Tal1, Klf1, Nfe2, Abcb10, Rpl28 isolated from CD52lo and CD52hi Ery I+II and Ery III populations under PHZ stress. (I)

Schematic illustration of the experiment to isolate CD52lo and CD52hi early erythroblasts (Ery I) from mice subjected to bleeding stress and culture in vitro. (J) Adenosine

triphosphate content of CD52lo and CD52hi early erythroblasts measured by CellTiter-Glo Luminescent Cell Viability Assay. (K) Proliferation of CD52lo and CD52hi early

erythroblasts in the in vitro culture from day 0 to day 5. (L) Erythroid differentiation of CD52lo and CD52hi early erythroblasts in the in vitro culture at day 3 and day 5, measured by

flow cytometry analysis. Representative flow cytometric plots were shown on the left. (M) Morphology of CD52lo and CD52hi early erythroblasts after cytospin. Scale bar, 10 μm.

(N) Illustration of the proposed model for cell intrinsic differentiation trajectory of emerging erythroid cells during anemic stress. Under steady state, murine spleen contains a

reservoir of mature erythrocytes, whereas during anemic stress, mice undergo splenomegaly, and early erythroblasts emerge in the spleen, displaying transition of various biological

processes during differentiation, with a “hiatus” subpopulation residing between early stages. Illustration was created via biorender.com. For all quantification, means ± SEMs; *

P < .05; ** P < .01; *** P < .001; **** P < .0001 by t test. mRNA, messenger RNA; OP-Puro, O-Propargyl-puromycin.
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Figure 5 (continued) Transcriptomic analysis of steady state BM single cells. (A) UMAP visualization of scRNA-seq data from steady state BM samples, with annotations
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differentiation capability (Figure 4L), although no evident morpho-
logical distinctions were observed between the 2 groups of early
erythroblasts (Figure 4M). These findings strongly suggest that the
“hiatus” subpopulation is characterized by a lower energy state,
which in turn leads to reduced proliferative and differentiation
capabilities. It is plausible that this phenomenon might be related to
an adaptive strategy adopted by early erythroblasts aimed at
conserving energy during emergency situations.

Collectively, our analysis revealed a step-wise functionally distinct
differentiation trajectory of splenic early erythroblasts under stress,
that they progress from protein synthesis to mitotic cell cycle, then
ubiquitination, and eventually maturation into erythrocytes to over-
come stress. Of particular importance, we have identified a “hiatus”
subpopulation that undergoes a temporary pause in major tran-
scriptional processes, while maintaining moderate protein biosyn-
thesis activities (Figure 4N).

Single-cell transcriptomic profiling of steady-state

BM corroborates splenic responses to stress

To expand on our findings regarding splenic response to anemic
stress, we conducted a single cell transcriptomic analysis of the
BM under steady state and performed a comprehensive analysis by
integrating these data with the stressed spleen data set.
(Figure 5A; supplemental Figure 3A and 3B).
9 APRIL 2024 • VOLUME 8, NUMBER 7
Through this investigation, we also identified a distinct subpopu-
lation of erythroid progenitors enriched with Cd52, which we pre-
viously termed as “hiatus” subpopulation. Cells in this
subpopulation exhibit low messenger RNA expression levels of key
erythropoiesis regulators (Figure 5B-D and supplemental
Figure 3C). However, we observed that the proportion of the
“hiatus” subpopulation in steady state BM was lower than that in
spleen erythroid progenitors under stress conditions (Figure 5E).
This finding suggests that the “hiatus” phenomenon may be more
enriched under stress conditions in the splenic erythroblasts,
possibly due to the increased demand for RBC production. It is
plausible that stressed erythroblasts within the "hiatus" subpopu-
lation adopt this strategy to conserve energy while fulfilling the
surge in the requirement for protein synthesis during early stages to
overcome stress erythropoiesis.

In a similar manner to the spleen data sets, we reclassified the
distinct groups of BM erythroblasts into 3 stages: the transition
from translation to mitotic cell division and subsequent post-
translational modifications, including protein ubiquitination, which
generally aligns with findings from previously reported human bulk-
transcriptomic data sets.15 Notably, we found that the distinct
functions exhibited by these 3 stages are strongly correlated with
the cell cycle status (Figure 5F-I). These findings suggest that
erythroblasts undergo a stepwise transition of distinct functions in
SINGLE-CELL ATLAS OF MURINE SPLEEN DURING STRESS 1661
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both steady state BM erythropoiesis and stress erythropoiesis in
spleen cells, indicating a parallel pattern of functional changes
during erythropoiesis across different physiological conditions.

Single-cell transcriptomic profiling of splenic

macrophages

Next, we proceeded to investigate the cell-extrinsic mechanisms
related to the erythroid niche, that is, EBI macrophages. To this
end, we identified macrophage populations expressing F4/80
belonging to 2 subclusters (clusters 19 and 22), and Vcam1 gene
is found to be significantly upregulated in Cluster 19 (supplemental
Figure 1D). Because Vcam1 is a crucial marker for EBI macro-
phages, we designated the 2 subclusters as the Vcam1+ and
Vcam1– subpopulations to facilitate further analysis (Figure 6A).

Notably, we observed differential expression of infiltrating macro-
phage markers in Vcam1– macrophages, including Ccr216 and
CD11b (Itgam)17 as well as expression of genes previously iden-
tified in Ly6chi infiltrating macrophages in the kidney, such as Chil3
and Plac8.18 In contrast, genes that have been identified as resi-
dent macrophage markers 18 (eg, C1qa, C1qb, and Cd81) were
found to be highly expressed on Vcam1+ macrophages in both
spleen and BM (Figure 6B-C and Supplemental Figure 3D-E).
Furthermore, trajectory analysis demonstrated the differentiation
pathway of macrophage subpopulations, from a less mature
Vcam1– state to a more developed Vcam1+ state (Figure 6D and
6E). Functionally, GO analysis of biological processes revealed that
the genes upregulated in Vcam1+ macrophages are highly
enriched in macromolecule/protein biosynthesis (Figure 6G),
whereas genes upregulated in Vcam1– subpopulations are pre-
dominantly associated with immune response and signaling path-
ways (Figure 6H). This suggests that different subpopulations of
macrophages in the spleen have distinct biological roles.

We next investigate the transcriptomes of Vcam1+ macrophages
upon stress. Heat map shows distinct transcriptional programs in
Vcam1+ and Vcam1– macrophages, under steady state, PHZ and
bleeding treatment, respectively (Figure 6F and supplemental
Figure 4D). GO analysis demonstrated that Vcam1+ macro-
phages undergoing stress (PHZ and BLD) are strongly associated
with pathways involved in combating superoxide, whereas Vcam1+
macrophages in a steady state exhibit enriched biological pro-
cesses related to macromolecule biosynthesis (Figure 6I and 6J),
which are typically linked to the functions of resident macrophages.
This suggests that Vcam1+ macrophages have a specialized role
under stress conditions.

CD81 marks EBI macrophages and is required for

erythroid regeneration from anemic stress

To identify novel markers and functional regulators for EBI
macrophage under both steady state and stress conditions, we
Figure 6. Splenic macrophage populations display distinct gene expression sign

scRNA-seq data of F4/80+ macrophage populations. (B) Volcano plots showing the DEGs

comparing the differences in selected gene expression levels between Vcam1+ vs Vcam1–

Pseudotime trajectory analysis demonstrating the directions of macrophage differentiation

single cells in Vcam1– and Vcam1+ macrophages from NT, PHZ, and BLD conditions, re

Vcam1+ macrophages (G), genes upregulated in Vcam1– macrophages (H), genes upregu

NT vs stress (PHZ/BLD) Vcam1+ macrophages (J). ER, endoplasmic reticulum; NT, no tre
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examined the DEGs closely. In contrast to bleeding, hemolysis
caused by PHZ is a result of cellular breakdown. Therefore, the
significant expression of genes encoding responses to DNA
damage caused by oxidative stress, including Prmt5, Apex1, and
Ctrc,19-21 under PHZ treatment (Figure 7A-B and Supplemental
Figure 4E) is intriguing. These molecules may elicit distinct
cellular responses compared with bleeding, as evidenced by the
observed differences in spleen morphology (Figure 1E).

Moreover, genes upregulated in Vcam1+ macrophages during
bleeding stress are involved in multiple biological processes related
to response to various stimuli or oxidative stress. Notably, these
genes are enriched in functions such as response to oxidative stress
(Fth1, Hmox1, Aif1, Sdc3, Ptgs1, Actn1, Axl, and Ccr3), regulation
of inflammatory response (Cd5l, Clec1b, C1qa, C1qb, C1qc, and
Ccl24), response to oxygen levels (Hbb-bs, Hbb-bt, Hba-a1, Hba-
a2, and Epb41l3), as well as response to cytokine stimulus (Hmox1,
Ckb, Vcam1, and Cd81) (Figure 7A-B and supplemental Figure 4E).
These finding suggests that EBI macrophages may have an impor-
tant role in combating the stimuli induced by inflammation and
oxidative stress in response to stressors.

Notably, we observed prominent CD81 expression on Vcam1+
macrophages before stress in both spleen and BM cells, and its
expression is significantly increased under bleeding conditions
(Figure 7A-B; supplemental Figure 3D-E). CD81, also known as
TAPA-1, belongs to tetraspanin superfamily and is expressed on
numerous immune cell types. Importantly, evidence from previous
studies suggests that CD81 is involved in various cellular pro-
cesses, including cell signaling and cell-cell contact.22 This sug-
gests that CD81 may serve as a promising surface marker for
identifying EBI macrophages.

To verify our hypothesis, we performed flow cytometry analysis on
F4/80+ macrophages isolated from BM and spleen under various
conditions, and our results showed that CD81 expression is
strongly associated with Vcam1 expression under steady state
conditions in both BM and spleen, as well as in spleen under PHZ
and BLD treatment (Figure 7C). The coexpression of CD81 on F4/
80+Vcam1+ macrophages was confirmed by multispectral imaging
flow cytometry (supplemental Figure 5A). Next, to confirm the
presence of CD81 on EBI macrophages, we performed imaging
flow cytometry that enables the characterization the structural and
morphological details of the EBI macrophages and associated
erythroblasts. Our analysis revealed that CD81 was highly
expressed on EBI macrophages under BM steady state conditions
and remained elevated in spleen during stress (Figure 7D;
supplemental Figure 5B-C). These findings suggest that CD81
could be a significant factor in the function of EBI macrophages
under both steady state and stress conditions.

To investigate the functional role of CD81 in EBI macrophages’
response to stress, we administered a CD81 blocking antibody
atures. (A) UMAP visualization of Vcam1– and Vcam1+ macrophages in the pooled

between Vcam1+ vs Vcam1– macrophages. (C) UMAP visualization and Violin plots

macrophages. (D) UMAP plot of macrophage populations coloured by pseudotime. (E)

as indicated by the arrows. (F) Heat map showing the expression levels of DEGs of

spectively. Enrichment analysis (GO biological processes) of genes upregulated in

lated in stress (PHZ/BLD) vs NT Vcam1+ macrophages (I), and genes upregulated in

atment.
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in vivo after treatment with either BLD or PHZ (Figure 7E and 7H).
We found that under BLD conditions, CD81 blockade resulted in
more severe splenomegaly (Figure 7F) and significant impairment of
erythroid recovery (Figure 7G), along with a significant reduction in
the association between erythroid cells and EBI macrophages
(Supplemental Figure 5D). Although the effects were less pro-
nounced under PHZ treatment, they were still observed (Figure 7I
and 7J). These data suggest that CD81 plays an important functional
role in the ability of EBI macrophages to mediate erythroid recovery
under stress conditions. The underlying mechanisms may involve
CD81’s roles in immune response, cell-cell fusion, and cell signaling.

Discussion

Although several single-cell analyses of stress erythropoiesis were
documented, ranging from investigations involving fetal liver/
EPO-stimulated BM23 to studies focusing on anemia-activated
cis elements,24 our study distinguishes itself by concentrating
on exploring the broader landscape of the splenic response to
PHZ and bleeding stress, particularly emphasizing insights into
EBI dynamics. Specifically, we delve into scrutinizing the differen-
tiation dynamics of erythroblasts during the recovery phase from
anemic stress, as well as identifying the cellular diversity and sur-
face marker profiles of resident EBI macrophage populations
(supplemental Figure 5E).

More specifically, the identification of the “hiatus” population of
erythroblasts during stress is intriguing. The term “hiatus” is
commonly used in the field of immunology to refer to a group of cells
that have undergone a sudden transition from an immature state to a
mature state. This phenomenon was first described in the context of
leukemia, in which it is known as “hiatus leukemicus,” and refers to a
sudden jump in the development of leukemic cells from an early to a
late stage with no intermediate stages.25 In the context of stress
erythropoiesis, the discovery of a subpopulation of Stage_1 eryth-
roblast displaying a transient pause in most transcriptional activities,
except for moderate level of protein synthesis, is captivating. One
possible reason for the existence of such transcriptionally quiescent
erythroid progenitor cells under stress is that they may be conserving
energy and resources by temporarily halting major transcriptional
activities until conditions become more favourable for them to pro-
liferate and differentiate. To gain a comprehensive understanding of
the mechanisms underlying the “hiatus” population, it is necessary to
conduct more extensive analysis, including the identification of more
potent surface markers and additional functional studies.

Another important finding is the distinct transcriptional programs in
various macrophage populations under different stressors
Figure 7. CD81 is expressed on EBI macrophages and functionally required to ove

of cells from Vcam1+ macrophages in PHZ and BLD conditions, respectively. (B) Violin p

Vcam1+ macrophages from NT, PHZ, and BLD conditions, respectively. (C) Flow cytome

respectively. (D) Coexpression of CD81 with F4/80 and Vcam1 on EBI macrophages in ste

Amnis ImageStream. (E) Schematic illustration of experiment to validate the function of CD

administered into BLD-treated mice. (F) Comparison of spleen morphology with or without

subjected to BLD stress with and without CD81 blockade (n = 5). (H) Schematic illustration

CD81 blocking antibody (anti-CD81) was administered into PHZ-treated mice. (I) Compari

3). (J) Peripheral blood analysis in mice subjected to PHZ stress with and without CD81 b

HCT, hematocrit; HGB, hemoglobin; NT, no treatment.

9 APRIL 2024 • VOLUME 8, NUMBER 7
(Figure 7A). The differential gene expressions related to DNA
damage repair, oxidative stress, and inflammation responses may
explain the observed differences in spleen histology. Furthermore,
we identified a novel surface marker labeling EBI macrophages and
functionally required to combat stress. This marker, CD81, was
previously found to facilitate cell-cell fusion in various contexts,
including between gametes, myoblasts, and virus-infected cells.26

In addition, CD81 is known to participate in signal transduction
and cell adhesion within the immune system.27 Studies also pro-
vided evidences for the downstream signaling of CD81. More
specifically, CD81 was shown to interact with the tetraspanin
CD19 in B cells, leading to activation of the B-cell receptor
signaling pathway. This results in the activation of the MAPK
pathway and phosphoinositide 3-kinase pathway, ultimately leading
to B-cell proliferation and survival.28 Hence, the discovery of CD81
as a novel surface marker on EBI macrophages has shed light on
the investigation of comprehensive downstream signaling path-
ways of CD81 under both steady state and anemic stress condi-
tions. Therefore, targeting CD81 could potentially modulate
erythroblastic island function and offer therapeutic opportunities in
various hematological disorders.

Collectively, our study expands upon previous analyses of murine
erythroid response to stress mediated by EBI interactions8 and
identifies novel cell-intrinsic and -extrinsic responses of EBIs to
anemic stress. Such advancements could potentially inform the
development of novel therapies for individuals suffering from ane-
mia and related diseases.
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