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Longitudinal plasma proteomics in CAR T–cell therapy patients
implicates neutrophils and NETosis in the genesis of CRS
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Chimeric antigen receptor (CAR) T-cell therapy directed toward CD19 for B-cell malignancies often
results in cytokine release syndrome (CRS). CRS typically occurs in the first week and is characterized
by increased proinflammatory cytokines and symptoms such as fever, headache, and nausea, in some
cases progressing to hypotension, hypoxia, and multiorgan failure.1-3 Prediction of CRS, as well as a
better understanding of the mechanisms leading to CRS onset, remain important unmet needs to
improve outcomes of CAR T-cell therapy. However, aside from the known set of cytokines associated
with CRS, current understanding of CRS mechanisms and biomarkers for early prediction remains
limited.3,4

To discover novel plasma proteins associated with CRS, we used a proximity ligation–based high-
throughput proteomics screening approach (Olink Proteomics) to analyze 453 protein biomarkers in
longitudinal plasma samples from 26 patients receiving CD19 CAR T-cell therapies, 21 of whom
developed CRS. Blood samples were collected at baseline (ie, before CAR T-cell infusion), on the day
of CAR T-cell infusion, and on multiple days throughout the inpatient hospitalization (~2 weeks;
Figure 1A). Matched demographic and clinical data (eg, daily CRS grading scores) were collected from
the electronic health record (Figures 1A and B; supplemental Table 1). We then used differential
expression analyses and linear mixed models to identify novel proteins that were elevated during CRS,
proteins that may predict CRS at baseline, and proteins in plasma that showed changes over time
specific to patients who developed CRS.

To identify proteins elevated as part of CRS, we analyzed proteomics data to find those differentially
abundant proteins in plasma of 21 patients at onset of peak CRS (ie, the first day of the highest CRS
grade experienced by a given patient) as compared with that in postinfusion samples from 5 patients
who did not develop CRS. This analysis identified multiple cytokines that are known to be elevated in
CRS, including IFNγ, IL6, IL15, and IL10 (Figure 1C-D).2,4 However, 6 additional proteins were newly
identified to be significantly increased at the onset of peak CRS, and 11 proteins were newly identified
to be significantly decreased (Figure 1C and D; full results of differential abundance analysis are
provided in supplemental Table 2).

Of note, the CD33 protein was a novel CRS protein that demonstrated an increase in abundance of
magnitude comparable with that observed for IFNγ and IL6. Interestingly, CD33 is expressed on myeloid
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Figure 1. Study design and differential protein expression at peak CRS. Overview of the study design and results of the differential expression analysis. (A) Schematic

depicting the course of treatment and data types collected. (B) Patient demographics and the maximum grades of CRS experienced. The median time to onset of CRS was 2 days

(with interquartile range, 1-7 days). The median time to onset of the peak CRS grade was 5 days (with inter-quartile range of 2-10 days). (C) Volcano plot of proteins significantly

up and down regulated at peak CRS compared to samples taken after CAR T-cell infusion from patients who never developed CRS, with dotted lines to distinguish between

points with an absolute fold change >2 or <2 and a q-value < 0.05. (D) Table of proteins identified as significant in the volcano plot, with an absolute fold-change >2 or <2 and a

q-value < 0.05. Axi-cel, axicabtagene ciloleucel; tisa-cel, tisagenlecleucel.
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cells, notably neutrophils and monocytes, which crosstalk with
other leukocytes via cytokine secretion and can be important reg-
ulators of inflammation.5,6 Monocytes express the cytokines IL-1
and IL-6 and have been shown to be crucial for development of
CRS in animal models.7

To identify candidate biomarkers for predicting the occurrence of
CRS incidence, the abundance levels of individual proteins at
baseline were compared between patients who developed CRS
and those who did not. Eleven proteins were found to have dif-
ferential expression at baseline using a threshold of unadjusted P-
value < .05 and absolute fold-change of ≥2.0 (supplemental
Figure 1; supplemental Table 3).

Notably, 3 of these proteins, SERPINE1 (PAI-1), TNFSF11
(RANKL), and PON3 showed differential abundance at baseline
with a q-value < 0.1 and represent candidate biomarkers for
26 MARCH 2024 • VOLUME 8, NUMBER 6
predicting CRS (supplemental Table 3; supplemental Figures 2-4).
Elevated serum SERPINE1 (PAI-1) levels have been observed in
patients with sepsis, ARDS, and COVID-19, but to our knowledge,
this is the first identification of SERPINE1 (PAI-1) as a baseline
predictor of CRS.8 SERPINE1 (PAI-1) is also a marker of endo-
thelial activation, a process that appears to be important in the
development of CRS.9 Interestingly, CD33 and 5 other proteins
found to be elevated at the onset of peak CRS (discussed above),
were among the list of 11 proteins differentially expressed at
baseline in patients who went on to develop CRS (unadjusted P <
.05 and absolute fold difference of ≥2; supplemental Table 3).

We next sought to evaluate whether the longitudinal dynamics of
protein abundance might be associated with subsequent devel-
opment of CRS using a linear mixed model analytic approach
(supplemental Methods). In this analysis, we identified 43 proteins
exhibiting differences in their abundance profile over time between
RESEARCH LETTER 1423
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Figure 2. Longitudinal differences in protein expression and NETosis-related assays. Results from the longitudinal linear mixed model analysis (with prediction intervals

calculated based on standard error), followed by protein expression assays. (A) CD33 expression after CAR T-cell infusion in participants (n = 22) leading up to CRS onset or

leading up to day 7 to 9 in those without CRS. NPX represents normalized protein eXpression on a log2 scale (Olink Proteomics). (B) Table of proteins with a significant CRS term

within the linear mixed model, indicating constitutively higher or lower expression levels over time leading to CRS onset. Light blue shading indicates proteins that were also found
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patients who developed any grade of CRS and those who never
developed CRS (Figure 2A-D; supplemental Table 4). This
included identification of 22 of 43 proteins that showed stable
over-time but different absolute levels of abundance between
groups (Figure 2B). Of these, 7 corresponded to proteins that
were also elevated at the time of peak CRS (shaded rows in
Figure 2B), and included CD33, which was stably elevated in
plasma over the entire period leading up to CRS onset
(Figure 2A).

The remaining 21 proteins that were identified showed increasing or
decreasing temporal dynamics leading up to CRS, in comparison
with patients who did not experience CRS (Figure 2D). Among
these, the myeloperoxidase protein (MPO) had the highest signifi-
cance ratio and the lowest P-value (Figure 2C). MPO was lower at
day 0 in the group experiencing CRS and demonstrated a rise to the
time of CRS onset. MPO is specifically expressed in neutrophils and
constitutes a major component of neutrophilic azurophilic gran-
ules.5,10 MPO is released upon activation of neutrophils, promoting
increased inflammation as well as damage to the endothelium and
tissues that may be relevant to promoting CRS.11,12 Furthermore,
MPO is important for the release of neutrophil extracellular traps
(NETs) and is a marker of NETosis.10,11 Interestingly, the values of
MPO were not significantly different among the groups at baseline
(supplemental Figure 5A). Because the majority of our baseline
samples were collected before lymphodepleting chemotherapy, this
may suggest that chemotherapy leads to a decline in MPO con-
centration preferentially in patients who later develop CRS
(supplemental Figure 5B), with MPO increasing toward baseline
levels in the days leading up to CRS onset.

Review of the other significantly altered proteins in the longitudinal
analysis identified another neutrophil granule protein, DEFA1
(α defensin 1, also known as human neutrophil peptide 1 [HNP-1]
or neutrophil defensin 1; supplemental Figure 6), as well as
RETN, a marker of neutrophil activation (supplemental Figure 7),
and DPEP1, a neutrophil adhesion receptor (supplemental
Figure 8).11,13,14

Collectively, these findings led us to ask whether neutrophil acti-
vation, and the process of NETosis in particular, might be associ-
ated with development of CRS. We then used enzyme-linked
immunosorbent assay to measure 2 additional markers of neutro-
phil activation and NETosis, citrullinated histone H3 (CitH3) and
circulating calprotectin, which were not included in the Olink pro-
teomic panels. CitH3 contributes to neutrophil chromatin decon-
densation during NETosis,12,15 and calprotectin is a heterodimer of
S100A8 and S100A9 abundant in the neutrophil cytoplasm and
released via NETosis.16 We measured these proteins in a larger
cohort of baseline plasma samples (n = 86) collected from patients
at the University of Michigan and Johns Hopkins Medicine
receiving CAR T-cell therapies, predominantly targeting CD19
(supplemental Table 5). The results showed a significant elevation
of CitH3 and calprotectin in patients who later developed CRS
(Figure 2E and F). CitH3 was elevated in patients who went on to
Figure 2 (continued) to be differentially abundant at peak CRS in Figure 1D. (C) MPO ex

leading up to day 7 to 9 in those without CRS. NPX represents normalized protein eXpress

over time only in participants who developed CRS, as indicated by the interaction term C

P-value). (E) Pre-CAR T–cell infusion CitH3 and (F) Calprotectin levels, measured using enz

grades of CRS. For CitH3 levels from 8 patients, a linear regression–based rescaling was
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develop grade 1 to 2 or grade 3 to 4 CRS, with increased levels
seen with grade 3 to 4, whereas calprotectin was elevated only in
patients who went on to have grade 3 to 4 CRS. Longitudinal
analysis of these markers, in a subset of patients for whom such
samples were available, did not show a definitive change in their
levels over time leading up to CRS (supplemental Figure 9).

In summary, our longitudinal plasma proteomic screen identified
novel candidate biomarkers related to CRS prediction at baseline,
during the time leading up to CRS, and during CRS itself. These
candidate markers have potential to be developed as biomarkers
for assessing CRS risk before CAR T-cell infusion or for earlier
CRS detection and escalation of care. Prospective studies of these
candidate biomarkers will be needed to validate our findings
toward clinical use.

The elevation of plasma levels of neutrophil-associated proteins,
including the NETosis markers CitH3 and calprotectin and their
correlation to CRS incidence and grade, suggests that neutrophil
dysregulation and overactivation may be an important new mech-
anism underlying the genesis and risk of CRS. To our knowledge,
neutrophil activation and NETosis have not yet been reported in
CAR T-cell therapy–associated CRS. If not contained or degraded,
NETs can function as damage-associated molecular patterns to
amplify inflammation.10,17,18 Excessive NETosis promotes inflam-
mation and tissue damage in various infectious and autoimmune
diseases.18-21 Indeed, recent research into COVID-19 pathogen-
esis suggests that NETs contribute to the cytokine storm that leads
to respiratory failure in some patients with COVID-19 by promoting
the release of cytokines, such as IL-1β and IL-6,22,23 and elevated
calprotectin levels and increasing numbers of neutrophils have
been associated with severe COVID-19 cases.24 In the case of
CAR T-cell therapy–associated CRS, our data indicate that
elevated NETosis-related signals occur before CAR T-cell infusion,
suggesting that they may have predictive value as candidate bio-
markers and may function to amplify the subsequent systemic
inflammatory cascade leading to CRS. In future studies, examining
the association between NETosis and traditional risk factors of
CRS, such as tumor burden may help better characterize the role
of NETosis in the development of CRS.

In conclusion, these findings have implications for the under-
standing and prediction of severe CRS, as well as potential new
therapeutic targets. Our findings support the hypothesis that
NETosis and neutrophil activity contribute to the mechanism of
CRS development. This is particularly exciting because Food and
Drug Administration–approved drugs that can inhibit neutrophil
activation or NETosis are available,10 representing promising
candidates for CRS prevention, which could be tested in clinical
trials if this hypothesis is validated.
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