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m Clonal hematopoiesis of indeterminate potential (CHIP), the clonal expansion of myeloid

_ cells with leukemogenic mutations, results in increased coronary artery disease (CAD) risk.
*In PWH’ CDf" nadir CHIP is more prevalent among people with HIV (PWH), but the risk factors are unknown.
assomates_ W_Ith clt?nal CHIP was identified among PWH in REPRIEVE (Randomized Trial to Prevent Vascular
hematopoiesis, a risk . . . L . .
Events in HIV) using whole-exome sequencing. Logistic regression was used to associate

factor of

. sociodemographic factors and HIV-specific factors with CHIP adjusting for age, sex, and
atherosclerosis and ] )
cancer smoking status. In the studied global cohort of 4486 PWH, mean age was 49.9 (standard

deviation [SD], 6.4) years; 1650 (36.8%) were female; and 3418 (76.2%) were non-White.
CHIP was identified in 223 of 4486 (4.97%) and in 38 of 373 (10.2%) among those aged >60
years. Age (odds ratio [OR], 1.07; 95% confidence interval [CI], 1.05-1.09; P < .0001) and
smoking (OR, 1.37; 95% CI, 1.14-1.66; P < .001) associated with increased odds of CHIP.
Globally, participants outside of North America had lower odds of CHIP including sub-
Saharan Africa (OR, 0.57; 95% CI, 0.4-0.81; P = .0019), South Asia (OR, 0.45; 95% CI, 0.23-0.80;
P =.01), and Latin America/Caribbean (OR, 0.56; 95% CI, 0.34-0.87; P = .014). Hispanic/Latino
ethnicity (OR, 0.38; 95% CI, 0.23-0.54; P = .002) associated with significantly lower odds of
CHIP. Among HIV-specific factors, CD4 nadir <50 cells/mm? associated with a 1.9-fold (95%
CI, 1.21-3.05; P = .006) increased odds of CHIP, with the effect being significantly stronger
among individuals with short duration of antiretroviral therapy (ART; OR, 4.15; 95% CI,
1.51-11.1; P = .005) (Pinteraction= -0492). Among PWH at low-to-moderate CAD risk on stable
ART, smoking, CD4 nadir, North American origin, and non-Hispanic ethnicity associated

« Clonal hematopoiesis
is less common outside
of North America
among PWH.
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with increased odds of CHIP. This trial was registered at www.ClinicalTrials.gov as
NCT02344290.
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Introduction

People with HIV (PWH) have an increased risk of atherosclerotic
cardiovascular disease (ASCVD),"' and a consistent body of evi-
dence demonstrates a 50% to 100% increased relative risk.” The
excess ASCVD risk among PWH is out of proportion to the
increased prevalence of recognized coronary artery disease (CAD)
risk factors, including smoking, dyslipidemia, and type 2 diabetes,
even among virally suppressed individuals.” The excess risk is at
least partly believed to be related to HIV's activation of the immune
system with resultant increased levels of proinflammatory proa-
therogenic cytokines, such as interleukin-6 (IL-6).%”

Clonal hematopoiesis of indeterminate potential (CHIP) is a
recently recognized risk factor for both hematologic malignancy
and CAD.®"" CHIP is the presence of leukemogenic somatic
mutations (typically in DNMT3A, TET2, ASXL1, JAK2, and TP53) in
hematopoietic stem cells with resultant clonal expansion. In addi-
tion to increased risks for hematologic malignancy and all-cause
mortality, CHIP is associated with a twofold increased risk of
CAD and a fourfold increased risk of early onset myocardial
infarction.'? The excess ASCVD risk associated with TET2 CHIP is
believed to be at least partly mediated through heightened
inflammation via the NLRP3/IL-1p/IL-6 pathway.'*"'* More recently,
smaller studies have revealed a higher prevalence of CHIP among
PWH, particularly in older age groups,'®'® which has been pro-
posed as a predictive marker for future ASCVD events among
PWH without traditional risk factors.”

The REPRIEVE (Randomized Trial to Prevent Vascular Events in
HIV) trial was launched in April 2015 and is the largest clinical trial
assessing an ASCVD prevention strategy among PWH, repre-
senting a unique opportunity to investigate ASCVD risk in PWH."®
REPRIEVE enrolled PWH with no known history of ASCVD and
with low-to-moderate CAD risk using traditional risk factors. The
trial is conducted in collaboration with the AIDS Clinical Trials
Group (ACTG) network, across >100 sites in 12 countries,
spanning 5 continents. Here, we report on the prevalence of CHIP
in the REPRIEVE cohort, as well as the association of socio-
demographic, clinical cardiovascular, and HIV-specific risk factors
with CHIP prevalence.

Methods

Study participants

PWH aged 40 to 75 years without known ASCVD, on stable
antiretroviral therapy (ART), not receiving statins, and with low-to-
moderate estimated ASCVD risk (as calculated with the 2013
American College of Cardiology/American Heart Association
Pooled Cohort Equations) were enrolled in the REPRIEVE trial as
previously described.'®?° Enrollment occurred from May 2015 to
February 2018, participants were blindly randomized to pitavastatin
vs placebo, and though the trial was closed due to observed effi-
cacy of the study treatment in April 2023, there will be continued
follow-up until termination visits. This cross-sectional study focuses
on parameters at time of enrollment in the trial, including baseline
blood DNA. Participants’ countries of residence were grouped
using the World Health Organization Global Burden of Disease
scheme as previously described.?’ The coordinating centers and
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sites obtained institutional review board and other applicable reg-
ulatory entity approvals. All participants were provided with study
information, including discussion of risks and benefits, and signed
the approved declaration of informed consent. The Massachusetts
General Hospital Institutional Review Board approved this sec-
ondary data analyses.

Phenotypes (exposures)

At enrollment, participants provided clinical history and blood
samples for standard laboratory investigations (supplemental
Table 1). Data on demographic parameters, medical history, life-
style behaviors, and HIV-specific parameters were collected as part
of REPRIEVE, as previously described. Natal sex, race, ethnicity,
and CD4 nadir were self-reported. CD4 nadir is defined as the
lowest CD4 count identified for the participant, typically at the time
of HIV diagnosis, and is regarded as a measure of infection
severity. The trial collected information on the current ART regimen,
duration of ART use and exposure to selected medications (eg,
abacavir [ABC], tenofovir disoproxil fumarate [TDFI], thymidine
analogs [zidovudine, stavudine, and didanosine], and protease
inhibitors). Regimens were classified by the presence of >1 potent
antiretrovirals including nonnucleoside reverse transcriptase inhib-
itors, integrase strand transfer inhibitors, nucleoside reverse tran-
scriptase inhibitors, and protease inhibitors.

WES

Participants recruited at accredited ACTG partner sites were
consented for genetic analyses. Baseline characteristics for
REPRIEVE participants recruited at ACTG sites vs non-ACTG sites
are presented in supplemental Table 2. Whole-exome sequencing
(WES) from whole blood samples in 45657 REPRIEVE participants
was performed by the Broad Institute’s Genomics Platform using
the Germline Exome v6 Plus GSA v3 Array on the NovaSeqS4
(lumina, Inc). The Germline Exome v6 combines human WES
product with an Infinium Global Screening plus Multi-Disease Array
(GSA v3). The hybrid selection libraries typically meet or exceed
85% of targets at 20x, comparable to ~55X% mean coverage. The
array consists of a 24-sample Infinium array with ~245 000 fixed
genome-wide markers, designed by the Broad.

CHIP genotyping (outcome)

Somatic mutations were called from WES data using Mutect2
software® in the Terra platform (https://app.terra.bio/), as previ-
ously described.'®?® A panel-of-normal (the 1000 Genomes PON;
gs://gatk-best-practices/somatic-hg38/1000g_pon.hg38.vcf.gz)
and the Genome Aggregation Database (gnomAD) were used to
filter germ line variants from the putative somatic mutation calls.>
Mutect2 calls were further filtered and variants were retained if
(1) total depth of coverage >20; (2) number of reads supporting
the alternate allele >3; (3) >1 read in both forward and reverse
direction supporting the alternate allele; (4) variant allele fraction
(VAF) >0.02; and (5) gnomAD allele frequency <0.001. To classify
CHIP, pathogenic variants were queried in genes known to drive
clonal hematopoiesis and myeloid malignancies.'®?*?° The
detailed CHIP calling pipeline was previously reported.”®

Statistical analysis

Descriptive statistics are reported using means with standard
deviations (SDs) or medians with interquartile range (IQRs) for
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Table 1. Baseline characteristics in REPRIEVE with WES

Table 1 (continued)

Overall (N = 4486)

Overall (N = 4486)

Age, mean (SD)
Natal sex
Female

Male

Ethnicity (collected in North America only)

Not in North America
Hispanic or Latino
Not Hispanic or Latino
Unknown
Race
Asian
Black or African American
Other
White
Country of recruitment
Botswana
Brazil
Haiti
India
Peru
South Africa
Thailand
Uganda
United States/Canada
Zimbabwe
Body mass index, median (IQR)
Smoking status
Current
Former
Never
Entry CD4 level (cells per mm®), mean (SD)
ART duration, mean (SD), y
Baseline ART regimen (by class)
NRTI + INSTI
NRTI + NNRTI
NRTI + Pl
NRTI-sparing
Other NRTI-containing
eGFR (mL/min per 1.73 m?), mean (SD)
On diabetic medications
History of hypertension
Family history of CVD
10-y ASCVD risk score (%)
Median (IQR)
Total cholesterol (mg/dL)
Mean (SD)
HDL cholesterol (mg/dL)
Mean (SD)

49.9 (6.38)

1650 (36.8%)
2836 (63.2%)

2608 (58.1%)
353 (7.9%)
1508 (33.6%)
17 (0.4%)

1050 (23.4%)
2089 (46.6%)
279 (6.2%)
1068 (23.8%)

277 (6.2%)
231 (5.1%)
140 (3.1%)
447 (10.0%)
146 (3.3%)
475 (10.6%)
587 (13.1%)
180 (4.0%)
1878 (41.9%)
125 (2.8%)
25.3 (22.2-29.0)

980 (21.8%)
964 (21.5%)
2537 (56.6%)
654 (291)
3.68 (3.52)

896 (20.0%)
2510 (56.0%)
781 (17.4%)
93 (2.1%)
206 (4.6%)
99.1 (19.2)
13 (0.3%)
1495 (33.3%)
673 (15.0%)

3.90 (1.70-6.60)
185 (36.3)

51.5 (16.9)
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LDL cholesterol (mg/dL)
Mean (SD) 107 (30.9)
Triglycerides (mg/dL)
Median (IQR) 108 (78.0-159)
Non-HDL cholesterol (mg/dL)

Mean (SD) 133 (35.2)

ART, antiretroviral therapy; CVD, cardiovascular disease; CD4, cluster of differentiation 4;
eGFR, estimated glomerular filtration rate; HDL, high density lipoprotein; HOMA-IR,
homeostatic model assessment for insulin resistance; hsCRP, high sensitivity C reactive
protein; LDL, low density lipoprotein; NNRTI, non-nucleoside reverse transcriptase inhibitor;
NRTI, nucleoside reverse transcriptase inhibitor; P, protease inhibitor.

normal and non-normal distributions for continuous variables,
respectively, as assessed by exploratory plotting and Shapiro-Wilk
testing. Categorical variables are reported using absolute counts
and relative frequencies. Comparisons between groups were per-
formed with a t test, Wilcoxon rank sum test, or ¥ test as appro-
priate. Adjusted logistic regression models were used to associate
presence of CHIP with sociodemographic, clinical, and HIV-
specific risk factors.

For HIV-specific factors, the primary outcome variable was pres-
ence of CHIP, and the primary exposures were CD4 nadir and ART
duration. Models were adjusted for age, natal sex, and smoking
status. Secondary exploratory analyses were conducted associ-
ating sociodemographic risk factors, clinical ASCVD risk factors,
and HIV-specific therapies with CHIP. All exploratory associations
were adjusted for multiple comparisons using the Benjamini-
Hochberg method with a false discovery rate of 0.05. Both
adjusted and unadjusted P values and Benjamini-Hochberg
thresholds for interpretation are presented. All statistical analyses
were performed using R version 4.0.5 and RStudio v2021.09.1
Build 372.

Results

Study population

The main REPRIEVE study included 7769 participants, 4837 of
whom were recruited from ACTG sites, and of these, 4807 pro-
vided consent for genotyping. Among those, 250 participants were
excluded for missing data or nongenetics consent. WES was
performed on the 4557 who consented for genetic analyses, and
among these individuals, 4486 passed quality control filters and
were included in this study (supplemental Figure 1). The mean age
was 49.9 (SD, 6.38) years, 1650 of 4486 (36.8%) had female sex
at birth, 2089 of 4486 (46.6%) were of Black or African American
race, and 353 of 1878 (18.8%) of those in North America were of
Hispanic or Latino ethnicity (Table 1). A total of 1878 (41.9%) were
from the United States or Canada, 587 (13.1%) from Thailand, 475
(10.6%) from South Africa, 447 (10.0%) from India, 277 (6.2%)
from Botswana, 231 (5.1%) from Brazil, 180 (4.0%) from Uganda,
146 (3.3%) from Peru, 140 (3.1%) from Haiti, and 125 (2.8%) from
Zimbabwe. Median body mass index was 25.3 (IQR, 22.2-29.0),
and 980 of 4486 (21.8%) reported current smoking, 964 of 4486
(21.5%) reported former smoking, and 2537 of 4486 (56.6%)
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Figure 1. Prevalence of CHIP in REPRIEVE. (A) Relative frequency of CHIP driver mutations in known CHIP genes; (B) frequency of participants carrying 1 or greater number

of CHIP mutations; (C) CHIP prevalence by age; (D) VAF does not vary significantly by the top 10 CHIP driver mutations.

reported never smoking. Mean total cholesterol level was 185 (SD,
36.3) mg/dL, high-density lipoprotein cholesterol level was 51.5
(16.9) mg/dL, low-density lipoprotein cholesterol level was 107
(80.9) mg/dL, and median triglycerides level was 108 (IQR, 78.0-
159) mg/dL. The median 10-year estimated ASCVD Risk Score
was 3.9% (IQR, 1.7%-6.6%). The mean CD4 count at entry was
621 (SD, 291) cells per mm®. Plots of the distribution of age, entry
CD4 count, and nadir CD4 count are presented in supplemental
Figure 2. Demographics of individuals recruited from ACTG and
non-ACTG sites are available in supplemental Table 2.

CHIP prevalence

Overall, 223 of 4486 individuals (4.97%) were identified to have
CHIP with a VAF >2%, and 87 of 4486 (1.94%) had large CHIP
clones (VAF > 10%). A list of all CHIP variants and VAF are noted
in supplemental Table 3. CHIP prevalence increased with age
group for both VAF >2% and VAF >10% (supplemental Table 4).
The most common CHIP driver mutations were DNMT3A and
TET2, followed by PPM1D, ASXL1, and TP53 (Figure 1A). The top
genes were similar to non-HIV cohorts with the exception of the
relative enrichment of PPM1D and TP53. The majority had 1 CHIP
mutation (215/223; 96.4%); 7 had 2 CHIP mutations (7/223;
3.1%), and 1 individual (0.5%) had 4 mutations (Figure 1B).
Consistent with prior reports, CHIP prevalence increased with
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advancing age (Figure 1C). VAF did not vary significantly across
the top ten CHIP driver genes (Figure 1D).

Sociodemographic and clinical cardiovascular risk
factors and CHIP prevalence

CHIP was found to be associated with select sociodemographic
and clinical cardiovascular risk factors that were collected as part
of REPRIEVE (Table 2). Age and cigarette smoking were demon-
strated to be highly significant predictors of CHIP, and all other
models were adjusted for age, male sex, and cigarette smoking
status. Lipids and calculated 10-year ASCVD risk were not found
to be associated with CHIP. The most significant findings were
decreased risk of CHIP among individuals of Hispanic/Latino
ethnicity in North America (odds ratio [OR], 0.38; 95% confidence
interval [Cl], 0.23-0.54; P=.0017) and lower odds of CHIP among
participants outside of high income North American countries
including sub-Saharan Africa (OR, 0.57; 95% ClI, 0.4-0.81; P =
.0019), South Asia (OR, 0.45; 95% ClI, 0.23-0.80; P = .01), and
Latin America/Caribbean (OR, 0.56; 95% ClI, 0.34-0.87; P=.014).

HIV-specific factors and CHIP prevalence

After adjustment for age, natal sex, and smoking status, CD4 nadir
was significantly associated with presence of CHIP. When
compared with a reference of 350+ cells per mm?, a CD4 nadir of
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Table 2. Sociodemographic and clinical cardiovascular risk factors and CHIP prevalence

Variable OR Cl-low Cl-high P value B-H threshold for significance
Age 1.07 1.05 1.09 <.001 NA, adjustment variable
Male sex 0.861 0.65 1.14 .30 NA, adjustment variable
Current/former smoking 1.37 1.14 1.66 <.001 NA, adjustment variable
Calculated ASCVD risk 1.00 0.95 1.05 .96 0.06
Total cholesterol 1.00 1.00 1.00 .69 0.05
LDL-C 1.00 1.00 1.00 .80 0.06
HDL-C 1 0.99 1.01 .59 0.04
Diagnosis of hypertension 1.14 0.88 1.49 .32 0.03
Hypertension medication 1.07 0.77 1.45 .68 0.05
Lipid lowering therapy 1.26 0.48 2.69 .59 0.05
Hormonal contraceptive therapy 0.36 0.09 0.97 .08 0.03
Estrogen therapy 0.26 0.01 1.19 18 0.03
Testosterone therapy 2.02 1.11 4.04 .066 0.02
Country group

High income North American countries 1 o

Latin America + Caribbean 0.56 0.34 0.87 .01 0.02

Sub-Saharan Africa 0.57 0.4 0.81 .002 0.01

South East/East Asia 0.81 0.52 1.22 .33 0.04

South Asia 0.45 0.23 0.8 .01 0.01
Ethnicity (collected in North America)

NonHispanic/Latino 1 =

Hispanic/Latino 0.38 0.23 0.54 .002 0.004

Here the odds of CHIP after adjustment for age, sex and smoking status is presented. Age, sex, and smoking status were used as adjustment variables and were not incorporated as
exploratory variables, and thus not adjusted for multiple comparisons. Statistically significant values after adjustment for multiple comparisons are highlighted in bold, and Benjamini-Hochberg

significance thresholds are presented.

B-H, Benjamini-Hochberg adjustment for multiple comparisons; HDL-C, high density lipoprotein concentration; LDL-C, low density lipoprotein concentration.

<50 cells per mm? had a 90% increased odds of CHIP (OR, 1.91;
95% Cl, 1.21-3.05; P =.006), and individuals with a CD4 nadir of
200 to 349 cells per mm® had a 63% increased odds of CHIP (OR,
1.63; 95% ClI, 1.06-2.55; P=.03) (Table 3). When modeled as an
ordinal categorical variable, there was a linear relationship across
CD4 nadir group (350+, 200-349, 50-199, and <50 cells per
mm?®) and odds of CHIP with a 49% increase in odds of CHIP for
every decrement in nadir CD4 level (OR, 1.49; 95% CI, 1.09-2.06;
P = .014). Total ART duration (<5 years, 5-10 years, and >10
years) was not significantly associated with presence of CHIP
(Figure 2). However, a significant interaction effect (pPiteraction=
0.049) was present between CD4 nadir and ART duration when
the strength of the association between CD4 nadir <50 cells per
mm?® and presence of CHIP (when compared with those with high
CD4 nadirs [>350 cells per mm®]) was stronger among individuals
with short ART duration <5 years (OR, 4.15; 95% Cl, 1.51-11.1;
P = .005) than among individuals with long ART duration >10
years (OR, 1.26; 95% ClI, 00.66-2.53; P = .50).

Entry CD4 count modeled as a standardized continuous variable
was not associated with presence of CHIP after adjustment for
age, natal sex, and smoking status (supplemental Table 5). A sig-
nificant interaction effect was found between entry CD4 count and
total ART duration <5 years (OR, 0.56; Py eraction = -006), in which
for every 1 SD increase in entry CD4 count, the odds of CHIP
presence was 40% lower (OR, 0.60; 95% ClI, 0.39-0.88; P =.01)
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if individuals had been on ART for a short duration (<5 years);
compared with no significant effect of increasing entry CD4 count
among those who were on ART for long durations (>10 years)

Table 3. CD4 nadir and ART duration and odds of CHIP presence

Predictor OR Cl-low Cl-high P value
CD4 nadir (cells per mm®)
>350 [ref] - - -
200-349 1.63 1.06 2.55 .03
50-199 1.39 0.911 217 .136
<50 1.91 1.21 3.05 .006
CD4 nadir (cells per mm?®)
Ordinal linear 1.49 1.09 2.06 014
Total ART duration (y)
>10 [ref] - - -
5-10 0.911 0.708 1.24 .663
<5 0.731 0.492 1.06 .109
Baseline ART duration (years - numeric) 0.981 0.942 1.02 .346

Results of multiple regression models adjusting for age, natal sex, and smoking status
associating CD4 nadir with presence of CHIP, structured as a categorical and ordinal
variable, and associating both total ART duration and baseline ART duration with presence of
CHIP.

CD4, cluster of differentiation 4.
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Other NRTI-containing -

NRTI-sparing -
NRTI + Pl 4
NRTI + NNRTII -
NRTI + INSTI +
TDF

Thymidine

Protease Inhibitor
Abacavir

ART Duration <5y
ART Duration 5-10y
ART Duration >10y

Risk factor

Category

-®- Baseline ART
ART Duration

-®- ART Exposure

-®- CD4 Nadir

-®- CD4 at Enrollment

CD4 <250 -
CD4 250-499 -
CD4 500-999 -

CD4 1000+ -
Nadir CD4 <50

Nadir CD4 50-199 -

Nadir CD4 200-349 -
Nadir CD4 350+ A

2 3
Odds ratio

Figure 2. HIV-Specific risk factors and odds of CHIP. Forest plot of multiple regression models for odds of CHIP, adjusting for age, natal sex, and smoking status. INSTI,

integrase strand transfer inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; Pl, protease inhibitor; TDF, tenofovir

disoproxil fumarate.

(OR, 1.15; 95% CI, 0.96-1.37; P =.14). Notably, the lowest entry
CD4 count in the data set was 92 cells per mm?® as these were
stable individual at low risk. To probe whether there was a rela-
tionship to HIV viral load, a supplementary analysis was performed
using 3011 of 4486 (67.1%) who had HIV viral load data at study
entry available. Of these individuals, 2652 of 3011 (88.1%) indi-
viduals had undetectable viral load. We did not observe a signifi-
cant association between viral load and odds of CHIP
(supplemental Table 6).

No specific ART regimen was significantly associated with
increased CHIP presence (supplemental Table 7). Additionally,
exposure or duration of exposure to specific ART medications were
not associated with the presence of CHIP (supplemental Table 7).

Given prior reports that mutations in DNA-damage response (DDR)
genes (ie, PPM1D, TP53, and RAD21) were enriched among
individuals with exposure to chemotherapy administration, we
performed secondary analyses for this CHIP subset. No HIV-
specific regimens were found to be significantly associated with
presence of CHIP with DDR driver genes (supplemental Table 8).
Given that 1% to 3% of individuals in the study cohort were known
to previously have a cancer diagnosis (supplemental Table 2), we
performed additional supplementary analyses to associate pres-
ence of cancer with odds of CHIP and found no significant rela-
tionship given the rarity of cancer in this cohort. No gene-specific
enhancement was seen by any cancer type.
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Discussion

The REPRIEVE trial provides a unique opportunity to study CHIP
among a global cohort of ART-treated PWH with low-to-moderate
traditional ASCVD risk. Even in this group, a high prevalence of
CHIP was still identified, with 1 in 20 affected overall (mean age,
50 years) and 1 in 10 affected among those aged >60 years.
Gilobal variation in CHIP prevalence among PWH has not previ-
ously been explored, and here, we observed that CHIP prevalence
was highest in North America by 56%. Among participants in North
America, those of Hispanic/Latino ethnicity had a 62% lower odds
of CHIP presence. This is consistent when examining race/ethnicity
differences among residents of North America in non-HIV
studies.'>?® Consistent with the literature, we found strong rela-
tionships with age and smoking status for presence of CHIP and
adjusted all other analyses for age, sex, and smoking status.
Furthermore, we found that lower CD4 nadir at time of HIV diag-
nosis was associated with a higher odds of CHIP presence, in
which those with the lowest CD4 nadir (<50 cells per mm?®) had a
nearly doubled odds of CHIP compared with those with CD4
nadirs >350 cells per mm®. Although no significant associations
were identified with a particular drug treatment group, most par-
ticipants had been exposed to numerous classes of therapies,
especially as first-line therapeutic options have evolved over time.
These observations inform our understanding of the factors influ-
encing CHIP presence as well as HIV-associated adverse clinical
outcomes.
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First, prevalence of CHIP is relatively high among PWH in
REPRIEVE, who, based on enrollment criteria, were early middle-
aged, stably treated with ART, and presenting with low-to-
moderate traditional ASCVD risk. Consistent with smaller
geographically restricted studies, we observe an acceleration of
CHIP incidence in later middle-life. This observation and others
support the scientific premise that there are unique selective fea-
tures among PWH that accelerate clonal proliferation later in
life.">'®"® However, this larger study found a lower CHIP preva-
lence than prior studies among PWH potentially due to the younger
age as well as the lower prevalence of clinical comorbidities and
risk factors relative of the REPRIEVE population. Interpreting these
data in the context of other studies indicating an exponential rise in
CHIP prevalence among PWH later in life; one possibility is that
influences on clonal fitness among individuals with HIV may occur
decades after HIV infection. Further longitudinal and controlled
studies are needed to confirm this hypothesis.

A surprising unique observation in this study was the increased
prevalence of CHIP driver mutations in DDR genes. Because DDR
driver mutations has been previously associated with exposure to
cancer therapies,>® ASCVD, and peripheral arterial disease,?” we
sought to investigate whether the same was true of ART in
REPRIEVE, but our exploratory analyses lacked sufficient power
given the tremendous diversity of specific ART regimens and the
numerous regimens to which each individual was exposed over the
course of their diagnosis. Further investigations of ART regimen
and influence on CHIP is an important future direction for study as
it may influence choice of ARTs for PWH given the high rate of
cardiovascular morbidity among PWH with longstanding infection.

We observed that the severity of HIV infection, as marked by CD4
nadir at time of diagnosis (and not current CD4 count), was
associated with increased odds of CHIP. This finding among 4486
PWH confirms an initial similar observation among 200 PWH.?®
This raises questions about whether features intrinsic to chronic
HIV infection increase the odds of CHIP or accelerates clonal
expansion. Furthermore, we now observe a synergistic effect of low
CD4 nadir and more recent initiation of ART for increased CHIP
prevalence. The residual inflammation demonstrated in virally sup-
pressed PWH has long-term health implications®°° and has
recently been demonstrated to be affected by host tumor sup-
pressor, innate immune, and inflammasome responses. Resistance
to chronic inflammation has been demonstrated to be a critical
element of clonal selection and survival advantage in CHIP.
Thereby, these data lend further support to the hypothesis that the
residual inflammation latent even in treated PWH may contribute to
high CHIP prevalence. Although ART treatment was not random-
ized, these observations support a hypothesis that early HIV-related
factors may have long-term inflammatory effects.®' *® CD4 nadir is
directly linked to the size of the latent HIV reservoir, even in virally
suppressed individuals.** The residual inflammation demonstrated
in virally suppressed PWH has long-term health implications®*?°
and has recently been demonstrated to be affected by host
tumor suppressor, innate immune, and inflammasome responses.30
Resistance to chronic inflammation has been demonstrated to be a
critical element of clonal selection and survival advantage in
CHIP.%® Thereby, these data lend further support to the hypothesis
that the residual inflammation latent even in treated PWH may
contribute to high CHIP prevalence. Although residual inflammation
due to HIV infection leading to clonal selection is perhaps more
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plausible, an alternate mechanism could be that ART treatment and
suppression of viral replication might decrease CHIP clone size;
future studies with serial CHIP acquisition will be necessary to
assess this.

This study findings must be interpreted in the context of its limita-
tions. First, the REPRIEVE cohort consists of PWH with low-to-
moderate risk from traditional cardiovascular risk factors, thus
perhaps, limiting generalizability. However, given the global study
population, this study provides important data on diverse pop-
ulations of PWH. Second, given the younger age of the cohort than
prior studies of CHIP in PWH, the prevalence of CHIP in
REPRIEVE is lower, thus limiting gene-specific analyses. Third,
despite being 10- to 20-fold larger in size with a more diverse
population than other CHIP and HIV studies to date, we cannot
rule out the possibility of reduced power in examining HIV-related
risk factors of CHIP. Nevertheless, given the sample size, to our
knowledge, our study has greater power than prior studies in
addition to lower false discovery rates.

In conclusion, among a global cohort of ART-treated PWH, CHIP
presence is related to intrinsic HIV-related factors, including low
CD4 nadir, especially in those who more recently initiated ART.
Additionally, global variation in the prevalence of CHIP is more
profound than previously known, including interethnicity variation.
No specific ART regimen was noted to be associated with a
greater odds of CHIP prevalence.
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