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CRISPR/Cas9 deletion of MIR155HG in human T cells reduces
incidence and severity of acute GVHD in a xenogeneic model
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Key Points

• MIR155HGΔexon3 T
cells provide protection
against lethal acute
GVHD in a xenogeneic
mouse model of
disease.

• MIR155HGΔexon3 T
cells maintain
beneficial graft-versus-
leukemia response
in vivo.
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Acute graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic

cell transplantation (allo-HCT). Using preclinical mouse models of disease, previous work in

our laboratory has linked microRNA-155 (miR-155) to the development of acute GVHD.

Transplantation of donor T cells from miR-155 host gene (MIR155HG) knockout mice

prevented acute GVHD in multiple murine models of disease while maintaining critical

graft-versus-leukemia (GVL) response, necessary for relapse prevention. In this study, we

used clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 genome

editing to delete miR-155 in primary T cells (MIR155HGΔexon3) from human donors,

resulting in stable and sustained reduction in expression of miR-155. Using the xenogeneic

model of acute GVHD, we show that NOD/SCID/IL2rγnull (NSG) mice receiving

MIR155HGΔexon3 human T cells provide protection from lethal acute GVHD compared with

mice that received human T cells with intact miR-155. MIR155HGΔexon3 human T cells

persist in the recipients displaying decreased proliferation potential, reduced pathogenic T

helper–1 cell population, and infiltration into GVHD target organs, such as the liver and

skin. Importantly, MIR155HGΔexon3 human T cells retain GVL response significantly

improving survival in an in vivo model of xeno-GVL. Altogether, we show that CRISPR/Cas9–

mediated deletion of MIR155HG in primary human donor T cells is an innovative approach

to generate allogeneic donor T cells that provide protection from lethal GVHD while

maintaining robust antileukemic response.

Introduction

Acute graft-versus-host disease (GVHD) is a T-cell–mediated immunological complication arising in
patients receiving an allogeneic hematopoietic cell transplantation (allo-HCT) and one of the primary
causes of nonrelapse mortality.1,2 The pathogenesis of acute GVHD involves the recognition of
cember 2023; prepublished online on
024; final version published online 16
dadvances.2023010570.

ontributed equally to this study.

ct (accession number PRJNA1060736).
ta are available upon request from the
(parvathi.ranganathan@osumc.edu).

The full-text version of this article contains a data supplement.

© 2024 by The American Society of Hematology. Licensed under Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0),
permitting only noncommercial, nonderivative use with attribution. All other rights
reserved.

R 4 947

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
https://doi.org/10.1182/bloodadvances.2023010570
mailto:parvathi.ranganathan@osumc.edu
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://crossmark.crossref.org/dialog/?doi=10.1182/bloodadvances.2023010570&domain=pdf&date_stamp=2024-02-16


D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/8/4/947/2215206/blooda_adv-2023-010570-m

ain.pdf by guest on 20 M
ay 2024
HLA-mismatched host tissues by immunocompetent T cells pre-
sent in the donor graft, leading to activation, proliferation, and
migration of donor T cells to GVHD target organs—primarily the
liver, skin, and gastrointestinal tract. This ultimately leads to severe
organ damage because of combination of inflammatory cytokine
secretion and direct cytotoxic effects.1-6 Conversely, these same
donor T cells are critical to eradicate residual hematologic malig-
nancy via the graft-versus-leukemia (GVL) effect in order to prevent
relapse.4,7 Standard GVHD prophylactic regimens include combi-
nations of calcineurin inhibitors along with antimetabolites.8 Recent
clinical trials using posttransplantation cyclophosphamide as pro-
phylaxis decreased acute and chronic GVHD incidence but not
relapse.9-11 Comprehensive preclinical12-14 and clinical studies15

on the role of CD28 costimulation in T-cell alloreactivity led to
the Food and Drug Administration approval of abatacept as the first
drug to prevent acute GVHD. Abatacept decreased incidence of
acute but not chronic GVHD without improving relapse rate or viral
infections.16-19 Therefore, to improve patient outcomes after allo-
HCT, novel strategies that prevent donor T-cell–mediated host
tissue damage while permitting GVL are highly needed.

MicroRNAs (miR) are small, noncoding RNAs that impart post-
transcriptional gene regulation through sequence-specific
messenger RNA silencing or degradation, resulting in reduced
target protein translation.20,21 miRs regulate various cellular pro-
cesses including cell growth, differentiation, development, and
apoptosis and have gained recognition for playing critical roles in
the development and function of the immune system.22 One of the
most well-defined miRs, microRNA-155 (miR-155), is encoded by
its host gene, MIR155HG or B-cell integration cluster, which is
composed of 3 exons that span a 13-kb region within human
chromosome 21. The mature miR-155 transcript is encoded by the
pre-miR-155 region located within exon 3.23,24

Early work has established the role of miR-155 in both innate and
adaptive immunity.25,26 Mice harboring a genomic deletion of miR-
155 (BICKO/MIR155HGKO) are viable with impaired T-cell
responses; MIR155HGKO T cells show attenuated inflammatory
tumor necrosis factor α and interferon gamma (IFN-γ) cytokine
release when stimulated with an antigen.25,27 Additionally,
MIR155HGKO CD4+ T cells show T helper–2 cell (Th2) bias,
secreting higher amounts of interleukin-10 (IL-10) and IL-4 and low
tumor necrosis factor α and IFN-γ25-27 cytokines. Corresponding to
its role in inflammation, miR-155 positively regulates pathogenic T-
cell responses in experimental autoimmune encephalomyelitis.28-30

During acute GVHD, miR-155 dysregulation occurs in both donor
and recipient immune cells.27,31,32 Expression of miR-155
increases in activated dendritic cells (DCs) and transplanting
MIR155HGKO DCs decreases GVHD severity through impaired
DC migration and reduced inflammasome activation.31 Previously,
we showed that miR-155 is upregulated in donor T cells in both
mice and humans with acute GVHD. Moreover, transplantation of T
cells from MIR155HGKO donor mice prevents acute GVHD in
multiple murine models of disease27,32 while maintaining beneficial
GVL response.32 Treatment of mice after transplantation with
antisense oligonucleotides targeting miR-155 (anti-miR-155)
decreases acute GVHD; however, efficiency of targeting miR-155
was low, and responses were not robust.32 These marginal incre-
ments in survival were maintained in additional experiments, despite
using anti-miR-155 then undergoing clinical trials33 and a dose or
schedule optimized in mice (unpublished data). Oligonucleotide
948 NEIDEMIRE-COLLEY et al
inhibitors of miR-155 showed promise in phase 1 safety trials33 but
failed phase 2 efficacy trials limiting the examination of miR-155
contribution to human T-cell function and translation of preclinical
studies.

To overcome this problem, we deployed a CRISPR (clustered,
regularly interspaced, short palindromic repeats)/Cas9 strategy to
delete miR-155 at the genome level in donor T cells. Using the
xenogeneic model of acute GVHD and GVL, we show that
genetically engineered human donor T cells harboring a genomic
deletion of MIR155HG (MIR155HGΔexon3) provide protection
from lethal acute GVHD while maintaining GVL response.
MIR155HGΔexon3 human T cells persist in the recipients displaying
decreased proliferation potential, proinflammatory Th1 population
and infiltration into GVHD target organs, including the liver and
skin. This study establishes that genomic deletion of MIR155HG in
donor T cells via genetic engineering is a novel and feasible
strategy to prevent acute GVHD, effectively decoupling GVHD and
GVL responses.

Methods

Isolation and activation of human peripheral blood T

lymphocytes

Peripheral blood mononuclear cells (PBMCs) were isolated by
Ficoll density gradient centrifugation from buffy coats of healthy
human donors obtained from Versiti. T lymphocytes were isolated
from PBMCs using human Pan T-cell isolation kit (Miltenyi Biotec).
Isolated T cells confirmed to be >95% pure (CD3+) and viable
(live/dead) were seeded at a density of 1 × 106 cells per mL and
activated using Dynabeads Human T-Activator CD3/CD28
(Thermo Fisher Scientific) at 0.5 × 106 cells per mL of media
(RPMI + 20% fetal bovine serum + 1% penicillin-streptomycin +
1% glutamine) + 30 U/mL recombinant human IL-2 (R&D Sys-
tems). Cells were incubated at 37◦C in 5% CO2 in a humidified
incubator for 48 hours. T-cell activation was confirmed by staining
for early activation marker CD69 as well as CD25, and only those
donors that showed robust activation (>95% CD69 and/or
CD25+) were used for transfection (supplemental Figure 1A).

CRISPR/Cas9 gene editing of MIR155HG

Guide RNAs were designed using Integrated DNA Technologies
(IDT) and CHOPCHOP34 web tools, and those predicted to have
lowest off-target binding and highest on-target efficiency while
binding to the specific region of interest were selected. Guide
RNAs were purchased from IDT as single guide RNAs (sgRNAs)
which contain both the crRNA and tracrRNA sequences and
chemical modifications for stability. crRNA targeting sequences are
listed in supplemental Table 1. CRISPR mutagenesis was per-
formed on activated T cells using ribonucleoprotein (RNP) complex
following previously published protocols.35,36 Briefly, 2 sgRNAs
(Alt-R CRISPR-Cas9 sgRNA, IDT) and electroporation enhancer
(Alt-R Cas9 Electroporation Enhancer, IDT) were incubated with
Alt-R S.p. Cas9 Nuclease V3 (IDT 1081059) in buffer T (Thermo
Fisher Scientific) at room temperature for 10 minutes in ~1.4 to 1
ratio to form the RNP complex. RNP complex was mixed with
activated T cells (1 × 106) and electroporation was performed
using the Neon Transfection System (Thermo Fisher Scientific).
Electroporation conditions were 1600 V, 10 milliseconds, and 3
pulses using buffer T. Electroporated cells were seeded at a
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4
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density of 0.5 × 106 cells/mL in a 6-well plate in RPMI-1640
medium supplemented with 20% fetal bovine serum and 1% L-
glutamine (antibiotic free). The flask was incubated at 37◦C in 5%
CO2 in a humidified incubator. Fresh antibiotic-containing media
(as for activation of T cells) with IL-2 were added, and cells
expanded for 7 days for in vivo experiments, pretransplant immu-
nophenotyping and for cytotoxic T lymphocyte (CTL)–associated
experiments.

Xenogeneic acute GVHD mouse models

Mice underwent transplantation under standard protocols
approved by the Institutional Animal Care and Use Committee at
The Ohio State University. Only age- and sex-matched NSG mice
were used. Briefly, 10-week recipient NSG mice were irradiated
with 100 cGy the day before transplantation. Equal numbers of
MIR155HGΔexon3 or nontargeting control (NT) CRISPR/Cas9–
edited T cells from healthy donors (5 × 106 or 10 × 106) were
administered on the day of the transplantation through tail-vein
injection.

Xenogeneic GVL mouse models

Irradiated (100 cGy) age- and sex-matched NSG mice were
injected with 5000 green fluorescent protein–containing (GFP+)
luciferase–transduced MOLM-13 human acute myeloid leukemia
(AML) cells 1 day before transplantation. On the day of trans-
plantation, mice were IV injected with 20 × 106 thawed T-cell–
depleted PBMCs (TCD-PBMCs) alone or with 5 × 106 autologous
MIR155HGΔexon3 or NT CRISPR/Cas9–edited T cells from healthy
donors in the ratio of TCD-PBMCs to T cells at 4:1. Tumor
persistence was tracked by whole-body IVIS imaging. TCD-
PBMCs and MOLM-13 cells (leukemia alone) served as the con-
trol group. MOLM-13–induced leukemic death was defined by the
occurrence of either macroscopic tumor nodules in liver and/or
spleen or hind limb paralysis.

Flow cytometry analysis

Cells were stained at various time points to assess purity, viability,
activation, and phenotype. Approximately 0.5 × 106 to 1 × 106 T
cells were stained with surface antibodies and viability dyes
following manufacturer’s protocols. Intracellular cytokine staining
was performed by T-cell stimulation with 1× cell stimulation cocktail
(ThermoFisher Scientific) for 5 hours. After 1 hour, 1× protein
transport inhibitor cocktail (ThermoFisher Scientific) was added.
Cells were fixed and permeabilized (eBioscience Permeabilization
buffer [1×]) followed by staining of intracellular cytokines or tran-
scription factors. Single-cell suspensions of liver used for flow
cytometry analysis were derived using commercially available liver
dissociation kit (Miltenyi Biotec). Absolute cell numbers were
enumerated using CountBright Plus Absolute Counting Beads
(Invitrogen). Absolute counts were calculated according to manu-
facturer protocol. Analysis was performed on the fluorescence-
activated cell sorting LSR Fortessa flow cytometer (Becton
Dickinson) or the Aurora (Cytek) depending on the size of the
panel. Data analysis was performed using FlowJo (Tree Star). Cells
from peripheral bleeds were analyzed using a modified version37 of
OMIP-042. Representative gating strategies (supplemental
Figure 1B) and antibodies used (supplemental Table 2) can be
found in the supplemental Data.

Detailed methods can be found in the supplemental Data.
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Results

CRISPR/Cas9–targeted deletion of MIR155HG

results in sustained downregulation of miR-155 with

minimal off-target effects.

We designed pairs of sgRNA34 to target MIR155HG. Schema of
MIR155HG loci identifying the pairs of gRNAs flanking regions of
interest are shown in Figure 1A and genomic polymerase chain
reaction (PCR) primers used to confirm deletion are listed in
supplemental Table 1. Activated, viable human T cells were elec-
troporated with sgRNAs NT, exon 3 targeting (MIR155HGΔexon3),
or promoter targeting (MIR155HGΔpromoter) and HiFi Cas9
enzyme38,39 as an RNP complex.35,39-41 Predicted genomic dele-
tions were confirmed using genomic PCR 72 hours after trans-
fection from NT vs MIR155HGΔexon3 (418 vs 243 bp) and NT vs
MIR155HGΔpromoter (551 vs 284 bp) genomic DNA (Figure 1B).
Quantitative reverse transcriptase–PCR showed a significant
reduction in miR-155 expression at 72 hours (MIR155HGΔexon3 vs
NT = 0.33 vs 1, P < .0001; MIR155HGΔpromoter vs NT = 0.48 vs 1,
P < .01; Figure 1C). Reduction in expression of miR-155
(MIR155HGΔexon3 vs NT = 0.45 vs 1, P < .0001) remained
significantly low through 7 days of expansion only in
MIR155HGΔexon3 cells (Figure 1C) and, therefore, only exon 3
targeting guides were chosen for further studies. Quantification of
editing efficiency was performed using droplet digital PCR that
showed a mean 49.05% editing using exon 3 targeting guides (P <
.01; Figure 1D). Whole-genome sequencing was performed on
DNA from unedited and MIR155HGΔexon3 samples to identify off-
target effects and data analyzed using Churchill.42 Putative off-
target mutations of moderate or high impact are listed in
supplemental Table 2. Quantitative reverse transcriptase–PCR was
performed in unstimulated vs CD3/CD28–stimulated T cells, and
among the 6 genes identified (HDAC7, KPNA4, MCC, OLFML2A,
HRNR, and IGFN1), only HDAC7 and KPNA4 were found to be
expressed in T cells (data not shown) corroborating publicly
available data sets.43,44 No changes in gene expression of HDAC7
(MIR155HGΔexon3 vs NT = 1.19 vs 1, not significant, ns) and
KPNA4 (0.86 vs 1, ns, Figure 1E) or protein levels (Figure 1F) were
detected between the NT and MIR155HGΔexon3 T cells. To test the
functional consequence of MIR155HG editing and subsequent
miR-155 downregulation, we assessed the expression of 2 evolu-
tionary conserved and bona fide miR-155 targets,29,45 Suppressor
of cytokine signaling (SOCS1) and WEE1, both at protein level.
We observed an increase in both SOCS1 and WEE1 protein
expression in MIR155HGΔexon3 compared with NT T cells con-
firming functional miR-155 deletion (P = .02, Figure 1G-H).

Transplantation of MIR155HGΔexon3 T cells prevents

lethal acute GVHD in a xenogeneic model

To evaluate in vivo function of edited T cells, we used a xenogeneic
model of acute GVHD, in which NSG mice underwent trans-
plantation with equal numbers of MIR155HGΔexon3 or NT T cells.
Recipients of MIR155HGΔexon3 T cells survived significantly longer
than mice receiving NT T cells (median survival MIR155HGΔexon3

vs NT = not reached vs 68 days, P < .05; Figure 2A-B left panels)
and showed significantly decreased acute GVHD clinical scores
(Figure 2A-B right panels). Crucially, improvement in survival was
maintained even when we increased T-cell dose from low (5 × 106

cells; Figure 2A) to high (10 × 106 cells; Figure 2B). NT T-cell–
MIR155HG DELETED T CELLS PREVENT ACUTE GVHD 949
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Figure 1. CRISPR/Cas9–mediated deletion of MIR155HG results in downregulation of miR-155 expression with minimal off-target effects. (A) MIR155HG gene

locus with 3 exons in blue shaded boxes and promoter region is shown. Yellow shaded box within exon 3 denotes pre-miR-155. Guide RNAs (gRNAs) targeting promoter region
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(qRT-PCR) at 72 hours (left) and 7 days after transfection (right). (D) On-target efficiency was quantified by droplet digital PCR performed 72 hours after transfection. (E) qRT-
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recipient mice showed decreased overall activity with severe
hunching, poor fur texture, and decreased skin integrity, whereas
MIR155HGΔexon3-recipient mice resembled healthy mice
(Figure 2C). Histopathological analysis revealed dramatically lower
levels of T cells infiltrating classical target organs for acute GVHD,
liver and skin,46 with correspondingly lower acute GVHD scores in
recipients of MIR155HGΔexon3 compared with NT T cells (P = .04
and P = .03; Figure 2D-E).

MIR155HG
Δexon3

T cells persist, with lower Th1-cell

population and decreased infiltration into GVHD

target organs

Analysis of weekly peripheral bleeds of recipient mice showed a
consistent increase in percentage of CD3+ NT T cells over time
whereas levels of MIR155HGΔexon3 T cells persisted, resulting in a
significant increase of CD3+ NT T cells compared with
MIR155HGΔexon3 T cells (Figure 3A-B). There was no significant
difference in the CD4 and CD8 subsets of T cells (Figure 3C).
Analysis of homing receptors CCR4 and CCR10 revealed a signif-
icant reduction in CCR4 (P = .005) but not CCR10 expressing
CD3+ T cells in mice that received MIR155HGΔexon3 compared with
those receiving NT T cells (Figure 3D). In addition, there was a
significant reduction in the percentage of circulating Th1
(CXCR5−CCR6−CXCR3+CCR10−, P < .05) but not Th17 T cells
950 NEIDEMIRE-COLLEY et al
(CXCR5−CCR6+CCR4+CXCR3+/−CCR10+) in mice that received
MIR155HGΔexon3 compared with those who received NT T cells
(gating strategy in supplemental Figure 1 B). Similarly, the
CD25hiCD127lo regulatory T (Treg)–cell percentages were similar
between MIR155HGΔexon3 and NT T-cell–recipient mice groups
(Figure 3E). Furthermore, our data show a significant increase in
expression of exhaustion markers LAG3 and Tim-3 (P < .01)
whereas increase in programmed cell death protein 1 (PD1)
expression did not reach statistical significance in MIR155HGΔexon3

CD4 T cells compared with NT T cells (Figure 3F). Interestingly,
there was no difference in expression of exhaustion markers on
CD8 T cells (Figure 3G). Pretransplantation immunophenotyping did
not reveal any significant difference between MIR155HGΔexon3 and
NT T cells before injection into NSG mice (supplemental Figure 2).

Furthermore, to evaluate T-cell infiltration into GVHD target organs,
NSG mice receiving NT or MIR155HGΔexon3 were harvested on
days 17 and 35 after transplantation and absolute counts of T cells
infiltrating the liver were enumerated. At both time points, CD3+

MIR155HGΔexon3 T cells present in the liver were significantly
lower than NT T cells (day 17, P = .04 and day 35, P = .004;
Figure 4A). Moreover, the numbers of MIR155HGΔexon3 CD4+ T
cells were significantly reduced as compared with that of NT CD4+

T cells at both time points (day 17, P = .04 and day 35, P = .0009)
whereas MIR155HGΔexon3 CD8+ T cells were significantly lower at
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4
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day 17 (P = .02), with approximately undetectable levels of CD8 T
cells in both groups at day 35 (Figure 4B). Proliferative capacity
was evaluated by Ki67 expression that showed significantly
reduced percentages and absolute counts of Ki67+

MIR155HGΔexon3 CD4+ T cells at both day 17 (P = .03 and P =
.01, respectively) and day 35 (P = .01 and P = .03, respectively)
after transplantation compared with control (Figure 4C-E). Inter-
estingly, we did not observe this trend in CD8+ T cells at either time
points. Aligning with peripheral bleed data, we show a significant
reduction in MIR155HGΔexon3 CD4+ Th1 subset as compared with
NT (P = .03), but similar absolute counts of Th17 and Treg-cell
populations (Figure 4F). Concordantly, total IFN-γ secreting
MIR155HGΔexon3 CD4+ T cells were significantly lower than NT
IFN-γ+ CD4+ T cells (P = .02; Figure 4G). Taken together, our data
substantiate that MIR155HGΔexon3 deletion reduces T-cell infiltra-
tion into a primary site of disease pathogenesis, the liver, displaying
reduced proliferation potential and effector Th1 cytokine secretion.

MIR155HGΔexon3 T cells retain GVL response in vivo

The primary goal of an allo-HCT is the elimination of residual
malignant cells in the recipient via a donor antileukemic response.
Thus, to investigate GVL capacity of MIR155HG-edited T cells, we
used a xeno-GVL model. Briefly, NSG mice were irradiated and
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4
injected with GFP+ luciferase–transduced FLT3-ITD+ MOLM-13
AML cell line along with TCD-PBMCs alone or TCD-PBMCs with
either MIR155HGΔexon3 or NT T cells from 2 independent donors.
Mice receiving control or MIR155HGΔexon3 T cells showed
reduced luminescence via whole-body bioluminescent imaging
when compared with mice receiving TCD-PBMCs alone
(Figure 5A), with significantly improved survival (P < .05;
Figure 5B). Flow cytometric analysis of GFP+ MOLM-13 tumor
burden in splenocytes of recipient mice confirmed that T-cell–
receiving mice were able to clear MOLM-13 leukemic cells (NT/
MIR155HGΔexon3 T cells vs TCD-PBMCs P = .003; Figure 5C). In
line with our previous results, levels of donor T cells were lower in
mice that received MIR155HGΔexon3 than those who received NT T
cells (percent CD3+ splenic T cells, 61.23 vs 40.40, P = .04;
Figure 5D). Importantly, lower percentages of MIR155HGΔexon3 T
cells did not hinder tumor clearance (% splenic GFP+ MOLM-13
cells, MIR155HGΔexon3 vs NT = 5.28 vs 3.19, ns; Figure 5C). To
evaluate CTL function of donor CD8+ T cells, splenocytes from
GVL mice were isolated and IFN- γ production and degranulation
was analyzed. Donor CD8+ T cells from NT and MIR155HGΔexon3

T cells showed comparable expression of IFN- γ and CD107a,
suggesting MIR155HGΔexon3 deletion does not disrupt the CTL
function in vivo (Figure 5E-G) and in vitro (supplemental Figure 3).
MIR155HG DELETED T CELLS PREVENT ACUTE GVHD 951
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Discussion

An allo-HCT is the most effective treatment for many patients with
leukemias, especially adults with AML. However, the overall survival
of patients with AML who underwent allo-transplantation remains
dismal at only 50% at 3 years owing to unacceptably high rates of
relapse and treatment-related mortality caused by GVHD and
infections, highlighting the need for more effective strategies to
improve posttransplant outcomes.1,47,48 Several preclinical studies
have demonstrated the significance of miRs in the development of
acute GVHD,49-53 leading to the identification of miRs as a novel
target for GVHD prevention. We have previously shown that miR-
155 is required for acute GVHD development, and trans-
plantation of MIR155HGKO T cells prevented murine acute GVHD
while maintaining beneficial GVL response.27,32 However, the
therapeutic efficacy of miR-155 antisense technology was low,
suggesting that better miR-155 targeting strategies were required
for clinical translation of these studies.

The CRISPR/Cas9 system uses a nuclease, Cas9, guided by
sgRNA to precisely modify the human genome and is an elegant
therapeutic approach for correcting monogenic disorders.54 Elec-
troporation of a complex of recombinant Cas9 with either in vitro
transcribed or synthetic sgRNA has overcome challenges related to
earlier approaches using viral vector or plasmid delivery.35,54,55 This
approach has resulted in high efficiency (50%-90%) in multiple
targets, such as CXCR4 and CCR555-59 in human T cells. Use of
the high-fidelity Cas9 (HiFi Cas9)– guided CRISPR system effi-
ciently engineers primary murine and human T cells,38,60 significantly
reducing off-target effects without affecting on-target efficiency.60 A
952 NEIDEMIRE-COLLEY et al
recent phase 1 clinical trial to assess the safety and feasibility of
CRISPR/Cas9 gene editing of T cells showed that modified T cells
were well-tolerated with durable engraftment,61 encouraging further
exploration of CRISPR-engineered immunotherapies.

In this study, we used CRISPR/Cas9 genome editing to delete
MIR155HG in primary human T cells and show that MIR155HG
regulates the incidence and severity of acute GVHD in a xenoge-
neic model. To our knowledge, our approach is the first to translate
genetic MIR155HGKO murine studies into human T cells using an
alternative approach of genome editing, thus filling the gap in
knowledge on the role of miR-155 in human T-cell function.

miRs exert their function by binding to messenger RNAs in a
sequence-specific manner and repressing translation of target
proteins. Studies have shown that miR-155 promotes inflammation
in part by downregulating SOCS129,62 protein. Moreover, miR-155
induces mutator activity, linking inflammation and cancer in part by
inhibiting translation of WEE1, a cell-cycle regulator.45 In agree-
ment with these studies, we observed an increase in SOCS1 and
WEE1 protein expression in MIR155HGΔexon3 T cells, which we
used as a functional readout for successful MIR155HG editing.

Chemokine receptors and adhesion molecules regulate migration
of T lymphocytes to target organs, playing a critical role in GVHD
pathogenesis. Blocking chemokine receptor CCR5 with maraviroc
decreases acute GVHD incidence in allo-HCT recipients63

whereas use of natalizumab that blocks α4 chain of α4β7 integrin
impairs T-cell homing to the intestine, showing limited protection
against intestinal GVHD.64,65 Our results can be explained mech-
anistically by impact of miR-155 on T-cell homing to acute-GVHD
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4
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target organs. Notably, we observed a significant downregulation
of CCR4 but not CCR10 protein expression in donor
MIR155HGΔexon3 T cells after engraftment. In both mice and
humans, CCR4 has been identified as a crucial mediator of skin-
specific Th lymphocyte homing,66 resulting in enhanced skin
inflammation.67 Thus, modulating T-cell trafficking to GVHD target
organs by targeting CCR4 in human donor T cells has clinical
implications for acute GVHD without interfering with GVL
responses.

Several studies have shown that miR-155 expression is increased
in different activated immune cell populations.30 Aberrant expres-
sion of miR-155 promotes inflammation in multiple autoimmune
diseases, such as multiple sclerosis, rheumatoid arthritis, and sys-
temic lupus erythematosus,30 skewing T-cell differentiation toward
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4
a proinflammatory Th1 phenotype.29,68 We observed a significant
decrease in circulating and target organ infiltrating Th1 but not
Th17 T cells in MIR155HGΔexon3 recipients compared with mice
receiving NT T cells. Interestingly, we do not observe these dif-
ferences in vitro, before injecting the cells into NSG mice. These
findings are in line with the first published reports that showed no
difference in Th1/Th2 cells in vitro between miR-155–expressing
and miR-155–deleted T cells.25,26 Additionally, we show that
MIR155HG-deleted T cells expand normally under homeostatic
conditions in vitro but exhibit lower proliferation potential in vivo
under inflammatory conditions. Surprisingly, we observed an
increase in expression of coinhibitory receptors Tim-3 and Lag3 but
not PD1 on CD4 MIR155HGΔexon3 vs NT T cells with no differ-
ences in CD8 T cells. This pattern may denote lower activation
status or induction of tolerance in MIR155HGΔexon3 CD4+ T
MIR155HG DELETED T CELLS PREVENT ACUTE GVHD 953
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cells;69-72 however, further investigation is required as to the
functional consequence of our findings because coinhibitory
receptor expression alone is not enough to denote exhaustion.
Taken together, our results suggest that MIR155HGΔexon3 deletion
in donor T cells permits T-cell survival and persistence but limits
Th1 proliferation and proinflammatory IFN-γ secretion at the target
tissue without affecting Th17 and Treg-cell numbers, thereby
reducing incidence and severity of GVHD.

Providing protection against acute GVHD without abrogating
beneficial GVL responses has been a major challenge limiting the
efficacy of allo-HCT therapy. Here, we show for the first time that
MIR155HGΔexon3 human T cells blunt acute GVHD responses with
significantly improved survival while retaining positive GVL
responses in vivo in a xenogeneic model. The caveat to using the
MOLM-13 model is that all mice eventually succumb to leukemia as
opposed to murine GVL models32,73,74 in which allogeneic T-cell
transfer induces strong GVL responses, completely eradicating
tumor. Despite using the highly aggressive MOLM-13 leukemia cell
line, our results demonstrate that MIR155HGΔexon3 T cells show
potent cytotoxic function in vitro and in vivo with effective killing of
AML cells and efficient degranulation and IFN-γ production by
MIR155HGΔexon3 T cells as compared with NT T cells, significantly
improving survival compared with mice that did not receive T cells.

Our proof-of-concept studies show the feasibility of generating
MIR155HG-deleted allogeneic donor T cells as an approach to
prevent GVHD while preserving antileukemic response. However,
questions remain regarding the different mechanism(s) by which
MIR155HGΔexon3 provides protection from GVHD. The addition of
TCD-PBMCs was necessary in the xeno-GVL model, indicating the
need for human antigen presenting cells to elicit a robust GVL
response against MOLM-13 AML cells. This was markedly different
from the xeno-GVHD model in which human T cells were neces-
sary and sufficient for causing GVHD. The discrepancies between
the GVL and GVHD models raise the possibility that
MIR155HGΔexon3 T cells may require TCD-PBMCs to induce
GVHD. This is a potential limitation of our study and a subject of
ongoing investigations in our laboratory. Encouragingly, previously
published data with murine MIR155HGKO CD4 and CD8 T cells
have shown that recipients are protected from GVHD even in the
presence of wild-type T-cell–depleted bone marrow.27 Establishing
tolerance is a crucial step to prevent acute GVHD, with several
studies showing that early adoptive transfer of Treg cells and/or
expansion of Tregs can prevent acute GVHD development.75-78

Studies using global MIR155HGKO murine models have shown
that loss of miR-155 leads to reduced Treg-cell population in the
thymus and periphery without affecting suppressive func-
tion.62,79,80 Our study distinguishes itself from prior research by
specifically targeting the deletion of MIR155HG in peripheral T
cells. In contrast, previous studies investigating the role of miR-155
in immune response modulation have predominantly used genetic
knockout mice, which inherently cannot exclude its influence on T-
cell development.25,26,29,62,81,82 Nonetheless, Treg functional
studies will be important to further understand the impact of
MIR155HG genetic deletion on human T-cell function.

In conclusion, our preclinical data strongly support the innovative
approach of genomic deletion of MIR155HG to generate alloge-
neic donor T cells that provide protection from lethal GVHD and
preserve GVL. This strategy could also be used to blunt acute
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4
GVHD responses arising after donor lymphocyte infusion and for
generating chimeric antigen receptor T-cell therapies that possess
targeted antileukemic properties.
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