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Key Points

• Current APS diagnosis
often requires the
cessation of
anticoagulation therapy
in patients who
experienced
thrombosis.

• An NN, based on
TG-derived
parameters, diagnoses
APS in anticoagulated
patients with an
accuracy of 92%.
2023-011938-m
ain
Thrombosis is an important manifestation of the antiphospholipid syndrome (APS). The

thrombin generation (TG) test is a global hemostasis assay, and increased TG is associated

with thrombosis. APS is currently diagnosed based on clinical and laboratory criteria, the

latter defined as anti-cardiolipin, anti–β2-glycoprotein I antibodies, or lupus anticoagulant

(LA). APS testing is often performed after a thrombotic episode and subsequent

administration of anticoagulation, which might hamper the interpretation of clotting assays

used for LA testing. We set out to develop an artificial neural network (NN) that can diagnose

APS in patients who underwent vitamin K antagonist (VKA) treatment, based on TG test

results. Five NNs were trained to diagnose APS in 48 VKA-treated patients with APS and 64

VKA-treated controls, using TG and thrombin dynamics parameters as inputs. The 2 best-

performing NNs were selected (accuracy, 96%; sensitivity, 96%-98%; and specificity, 95%-

97%) and further validated in an independent cohort of VKA-anticoagulated patients with

APS (n = 33) and controls (n = 62). Independent clinical validation favored 1 of the 2 selected

NNs, with a sensitivity of 88% and a specificity of 94% for the diagnosis of APS. In conclusion,

the combined use of TG and NNmethodology allowed for us to develop an NN that diagnoses

APS with an accuracy of 92% in individuals with VKA anticoagulation (n = 95). After further

clinical validation, the NN could serve as a screening and diagnostic tool for patients with

thrombosis, especially because there is no need to interrupt anticoagulant therapy.
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Introduction

Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by the presence of anti-
phospholipid antibodies (aPL) and thrombosis and/or pregnancy morbidity.1,2 Due to unclarities in
the pathophysiological background of APS, the syndrome is currently classified based on a combination
of laboratory and clinical criteria.3,4 The clinical and laboratory criteria are defined as vascular throm-
bosis or pregnancy morbidity and the presence of anti-cardiolipin (aCL) antibodies and/or anti–β2-
glycoprotein I (aβ2-GPI) antibodies and/or lupus anticoagulant (LA), respectively.3 Patients who
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display at least 1 laboratory and 1 clinical criterion are diagnosed
with APS. Multiple assays are available to measure LA, aCL, and
aβ2-GPI antibodies.5-7 Because the diagnostic criteria depend in
part on laboratory measurements, dissonance in test results
between hospitals and manufacturers may result in a different
diagnosis for the same patient.6-9

We have previously used a combination of global thrombosis tests
and artificial intelligence in a clinical symptom–driven diagnostic
approach. In this approach, laboratory testing for a prothrombotic
phenotype was performed using the thrombin generation (TG)
test.10 The TG test is known to correlate with thrombosis11,12 and
differ between patients with APS and healthy individuals.13-17

Thrombin dynamics (TD) analysis quantifies the procoagulant and
anticoagulant processes that govern TG.18 TD analysis has shown
that prothrombin conversion (PC) and thrombin inactivation are
significantly altered in APS.10,13 The accelerated PC indicates a
prothrombotic state in patients with APS.13 Additionally, the acti-
vated protein C pathway is less effective in patients with APS.14-16

Even though significant differences exist between controls and
patients with APS in the dynamics of TG, it is not possible to
distinguish between these populations based on 1 single test.13 We
previously used the artificial intelligence approach, neural
networking, to develop a model that diagnoses patients with APS
from a control cohort.10 An artificial neural network is a computa-
tional model inspired by the structure of the human brain and con-
sists of a collection of artificial neurons.19 It can be trained to classify
patients based on a database of characteristics of each patient,
such as general patient information and laboratory test results. The
previous neural network was trained to distinguish between healthy
individuals and patients with APS based on TG and TD data, that is,
to diagnose APS.10,13 Importantly, in this initial project, the neural
network was developed for deployment on nonanticoagulated
patients and controls.10 This excludes a substantial part of patients
with suspected APS, because most patients receive anticoagulant
treatment immediately upon the development of a thrombotic
event.20 Vitamin K antagonists (VKAs) are the recommended treat-
ment for thrombotic APS, although direct oral anticoagulants can be
considered in some situations. In this study, we focused on patients
with thrombosis treated with VKAs.21 Due to LA testing being based
on coagulation assays, interpretation of test results might be difficult
in patients during VKA treatment. Therefore, guidelines advise to test
for LA whenever possible before starting anticoagulation or to
interrupt anticoagulant therapy.22-24 Because VKA discontinuation,
even for a short time, is far from ideal for patients at high risk for
thrombosis, we set out to develop an APS diagnosing neural
network that does not require the temporary cessation of VKA
anticoagulant therapy, based on the results of TG and TD assays.

Materials and methods

Patients and sample collection

The first set of plasma samples was collected at the University
Hospital of Nancy (France). The second set of plasma samples was
a subset of an APS multicenter study for which patients and
controls were enrolled at multiple European medical centers.6 A
total of 48 and 33 patients with APS (obstetric or thrombotic) on
VKA therapy and 64 and 62 control participants on VKA therapy
were enrolled in the developmental (Nancy) and clinical validation
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(multicenter study) cohorts, respectively. In addition, 38 thrombosis
controls were enrolled in the study, who were comparable in age
with the patients with APS (47 years on average) and predomi-
nantly female (58%). All thrombosis controls tested negative for LA,
aCL, and aβ2-GPI antibodies, and 2 patients were on VKA therapy.

All patients with APS were diagnosed according to the Sydney
criteria, and laboratory tests for aPL were performed according to
the International Society on Thrombosis and Haemostasis-Scientific
and Standardization Committee criteria; all patients were on VKA
therapy (Table 1).22,25 The research was approved by the institu-
tional review boards and the local ethics committees of the partici-
pating centers. The study was performed in accordance with the
Declaration of Helsinki. Age <18 years was an exclusion criterion for
all groups. Blood was collected on 3.2% citrate in a 9:1 ratio, and
platelet poor plasma was prepared by double centrifugation.24

APS-specific testing

aPL positivity was defined as positivity for LA and/or aCL anti-
bodies and/or aβ2-GPI immunoglobulin G/immunoglobulin M.3 LA
positivity was determined by each local center, according to the
International Society of Thrombosis and Haemostasis-Scientific
and Standardization Subcommittee guideline.28 In the first APS
cohort, aCL antibody presence was tested by enzyme-linked
immunosorbent assay,29 and aβ2-GPI antibodies were detected
as previously described.13,30 In the second APS and non-APS
thrombotic cohorts, aCL and aβ2-GPI antibodies were detected
using the QUANTA Lite enzyme-linked immunosorbent assay
(Inova Diagnostics) according to the manufacturer’s specifications.

Coagulation factor measurements

Plasma fibrinogen levels were measured by the Clauss method on
the STA-R analyzer according to the manufacturer’s instructions
(Diagnostica Stago, Asnières-sur-Seine, France). Functional anti-
thrombin (AT) levels were determined using a chromogenic sub-
strate on the STA-R analyzer according to the manufacturer’s
instructions (Diagnostica Stago). α2-macroglobulin (α2M) was
measured in a functional home-made assay (Synapse Research
Institute, Maastricht, The Netherlands).18

TG

TG was measured by calibrated automated thrombinography using
PPP reagent low and PPP reagent (Diagnostica Stago). TG was
measured in the presence or absence of thrombomodulin (TM) to
test the sensitivity of the activated protein C system (Synapse
Research Institute).31 The concentration of TM was titrated to
achieve a 50% inhibition of the ETP in pooled normal plasma.31

Pooled normal plasma was prepared locally from plasma
obtained from 40 healthy donors.

TD

The TD method was used to calculate PC and thrombin inactiva-
tion parameters from TG data, as described in detail elsewhere.18

The rate of thrombin inactivation was computed based on plasma
AT, α2M, and fibrinogen levels. PC curves were calculated from TG
curves using the computed thrombin inactivation rate.

The generated PC curve was quantified by the total amount of
prothrombin converted (PCtot) and the maximum PC rate (PCmax).
Additionally, the formation of thrombin-AT (T-AT) and thrombin-α2M
ANTIPHOSPHOLIPID SYNDROME DIAGNOSIS BY AI 937



Table 1. General data of the participants in the developmental and clinical validation cohorts

Developmental cohorts Clinical validation cohorts

Patients with APS (n = 48) Controls (n = 64) Patients with APS (n = 33) Controls (n = 62) Thrombosis controls (n = 38)

Age, mean ± SD, y 46 ± 14 67 ± 11* 47 ± 12 69 ± 11* 47 ± 13†

Sex, n (% male) 18 (38) 47 (73)* 9 (27) 51 (82)* 16 (42)†

Primary APS, n (%) 30 (62) 33 (100)

Secondary APS, n (%) 18 (38) 0 (0)

LA, n (%) 39 (81) 29 (88) 0 (0)

Anti-CL antibodies, n (%) 38 (79) 25 (76) 0 (0)

Anti–β2-GPI antibodies, n (%) 27 (56) 34 (81) 0 (0)

Thrombosis, n (%) 48 (100) 4 (6%)* 31 (94) 7 (11)* 38 (100)†

Pregnancy morbidity, n (%) 8 (17) 4 (12) 0 (0)

INR‡
(treatment range21,26,27)

NA
(2.0-3.0)

2.8 ± 0.8
(2.0-3.0)

2.5 ± 0.9
(2.0-3.0)

3.1 ± 1.0
(2.0-3.0)

2.1 ± 0.3 (VKA)
1.1 ± 0.3 (non-VKA)

(2.0-3.0)

INR, International normalized ratio; NA, not available; SD, standard deviation.
*P < .001 compared with patients with APS.
†No significant difference compared with APS patients.
‡INR data were not available for all participants; results for a subset of the cohorts is shown.
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(T-α2M) complexes was obtained from TD analysis. The thrombin
decay constant was determined separately, which is defined as the
overall capacity of a plasma sample to inactivate thrombin.

Neural network development

Neural networks were trained to diagnose patients with APS
from a cohort of anticoagulated individuals using Matlab’s Neural
Net Pattern Recognition Application (Neural Network Toolbox,
version 9.0.0.341360 R2016a; Mathworks, Natick, MA). Neural
networks are so-called black box models because researchers
cannot define the way how individual artificial neurons work
together to arrive at the final output, although some modulation
is possible.

In this study, neural networks were structured as 2-layer feed-
forward networks, with sigmoid hidden and softmax output neu-
rons, and containing 10 neurons in the hidden layer. Neural networks
were trained with scaled conjugate gradient backpropagation.
Training, validation, and testing data sets contained 70%, 15%, and
15% of the samples, respectively, and the samples were randomly
assigned to 1 of 3 data sets before every neural network run. Owing
to the random assignment of samples to the training, validation, or
testing data sets before each neural network run, differences exist
between each developed neural network.

The input of the APS-diagnosing artificial neural network consisted
of TG parameters (lag time, time-to-peak, peak height, ETP, and
velocity index), TD parameters (PCtot, PCmax, thrombin-AT com-
plexes, T-α2M complexes, and thrombin decay constant), and the
inhibition of peak height and PCmax by TM. The outputs of the neural
networks were either “APS patient” or “control subject.” Neural
network training was performed 5 consecutive times using the
developmental cohort database (48 patients with APS and 64
anticoagulated controls). The accuracy of each developed neural
network was quantified using ROC analysis (sensitivity and speci-
ficity) and by calculating the positive and negative predictive values.
When the neural network was applied to new clinical samples, each
938 de LAAT-KREMERS et al
sample was appointed a value between 0% and 100%, representing
the likelihood of the sample being a control sample (closer to 0%) or
a patient with APS sample (closer to 100%).

The 2 neural networks with the highest performance were selected
for clinical validation in the separate clinical validation cohort (33
APS patients and 62 anticoagulated controls). From this analysis,
the best-performing neural network was selected, and its accuracy
was further tested in patients with APS of the validation cohort (n =
62) and the non-APS thrombosis controls (n = 38).

Statistical analysis

Statistical analyses were performed in GraphPad Prism (version
10.0.1; GraphPad Software, Boston, MA). The Mann-Whitney test
or the Student t test was used according to the distribution of data
to compare differences between the groups, and statistical sig-
nificance was reported as P values <.05.

Results

For the developmental cohort, the hemostatic profile was assessed
in 48 patients with APS and 64 controls, both on VKA treatment.
Patients with APS were significantly younger and more often
female than control participants (P < .001 for both; Table 1
“Developmental cohort”). Sixty-two percent of patients with APS
suffered from primary APS, whereas 38% suffered from secondary
APS (all patients suffered from lupus). LA was detected in 39
patients with APS (81%), whereas aCL and aβ2-GPI antibodies
were detected in 38 (79%) and 27 patients (56%) with APS,
respectively. All patients with APS experienced prior thrombosis,
compared with 6% of the anticoagulated control population, and
17% of patients with APS suffered from pregnancy morbidity.

The hemostatic system of patients with APS and controls was
studied by TG and TD analysis (Figure 1). TG was used to inves-
tigate the potential of each patient to generate a procoagulant TG
response, regardless of their anticoagulant therapy.
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4
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Figure 1. TG and TD parameters in patients with APS (n = 48) and control participants (n = 64) in the neural network developmental cohort. (A-C) TG

parameters lag time (A), peak height (B), and time-to-peak (C) did not differ significantly between patients with APS and controls on VKA treatment. (D-E) The ETP (D) was

27 FEBRUARY 2024 • VOLUME 8, NUMBER 4 ANTIPHOSPHOLIPID SYNDROME DIAGNOSIS BY AI 939

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/8/4/936/2215167/blooda_adv-2023-011938-m

ain.pdf by guest on 29 M
ay 2024



Table 2. Quantification of the performance of the 5 developed neural

networks in the developmental phase

NN01 NN02 NN03 NN04 NN05

Positive predictive value (%) 94.0 95.6 95.8 91.3 93.6

Negative predictive value (%) 98.4 92.5 96.9 90.9 93.8

Sensitivity (%) 97.9 89.6 95.8 87.5 91.7

Specificity (%) 95.3 96.9 96.9 93.8 95.3

Overall accuracy (%) 96.4 93.8 96.4 91.1 93.8

The positive and negative predictive values, sensitivity and specificity, and the overall
accuracy were determined for all 5 neural networks (NN01-NN05) in the developmental
cohort during the developmental phase and in a separate clinical validation cohort in the
clinical validation phase. Overall, NN01 and NN03 showed the most accurate performance. D
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Figure 1 shows that although patients with APS on average have a
significantly lower ETP than controls (P = .011; Figure 1D), the
velocity index, that is, the rate at which the burst of TG occurs, was
significantly higher on average (P < .0001; Figure 1E). Moreover,
TG in patients with APS was significantly less sensitive to the
anticoagulant action of TM on average (P < .0001; Figure 1F). The
TG peak height and the time-dependent parameters, lag time and
time-to-peak, did not differ significantly between patients and
controls (Figure 1A-C). However, the overlap between the patient
and control groups does not allow the distinction between normal
controls and patients with APS based on single TG parameters.

TD analysis was used to examine the balance between PC and
thrombin inactivation in patients with APS and controls. PCmax was
significantly increased on average in patients with APS compared
with controls (P = .0263), whereas PCtot was comparable
(Figure 1G-H). PCmax was less sensitive to the inhibitory actions of
TM in patients with APS on average (P < .0001; Figure 1I), in line
with the reduced effect of TM on TG. Thrombin inhibitor complex
formation was comparable between controls and patients with
APS (Figure 1J-K). Nevertheless, the average intrinsic thrombin
inhibitory capacity of patients with APS and control participants,
that is, the thrombin decay capacity, was higher in patients with
APS than in controls (P = .0004; Figure 1L).

Similar to TG parameters, the overlap between the patient and
control groups does not allow for the distinction between normal
controls and patients with APS based on single TD parameters.
Therefore, we used the artificial intelligence method of neural
networks that incorporate all TG and TD parameters into 1 pre-
diction model to diagnose anticoagulated patients with APS from a
group of anticoagulated controls.

Five independent neural networks were developed, using 6 TG and
6 TD parameters as inputs. The performance of each neural
network throughout the developmental phase are shown in detail in
supplemental Figure 1. Neural network 1 (NN01) and NN03 were
the most accurate neural networks for the diagnosis of APS,
because they correctly classified 61 of 64 controls (95%) and 47
of 48 patients with APS (98%); and 62 of 64 controls (97%) and
46 of 48 patients with APS (96%), respectively. The least accurate
neural network was NN04, which correctly classified 60 of 64
controls (94%) and 44 of 48 patients with APS (92%).

The performance of the 5 developed neural networks was deter-
mined as the overall accuracy, positive and negative predictive
value, and specificity and sensitivity (Table 2). NN01 showed the
highest negative predictive value (98.4%) and sensitivity (97.9%);
whereas NN03 showed the highest positive predictive value
(95.8%) and specificity (96.9%). Both NN01 and NN03 had an
identical overall accuracy (96.4%), and the performances of NN02,
NN04, and NN05 were inferior compared with NN01 and NN03.
Therefore, NN01 and NN03 were selected for an in-depth perfor-
mance analysis and clinical validation (Figure 2).
Figure 1 (continued) significantly lower in patients with APS than controls; whereas the

height was significantly less in patients with APS compared with controls. (G-K) TD param

were comparable between anticoagulated patients with APS and controls; (H, I) PCmax wa

the inhibitory actions of TM (I). (L) The thrombin decay capacity was significantly higher in pa

the Mann-Whitney test. *P < .05; ***P < .001; ****P < .0001. Data are shown as median
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Figure 2A-B show the comparison of the confusion matrices of the
development of NN01 and NN03. ROC curve analysis showed a
high sensitivity and specificity for both neural networks, although
NN03 was slightly more accurate (ROCAUC, 0.9941; confidence
interval [CI], 0.9847-1.000) than NN01 (ROCAUC, 0.9857; CI,
0.9647-1.000). The ROCAUC values were higher for both NN01
and NN03 than for individual variables when used separately for
the diagnosis of APS. The ROCAUC for the individual variables
ranged from 0.5003 (CI, 0.3903-0.6104) for the peak height to
0.86 (CI, 0.7911-0.9315) for the inhibitory effect of TM on the peak
height (supplemental Table 1; supplemental Figure 2).

The neural network expresses the suspicion of APS as a value
between 0% and 100%. A value close to 0% indicates a low
chance of APS, and a percentage close to 100% indicates a high
likelihood of APS. Figure 2E-F show that both in NN01 (Figure 2E)
and NN03 (Figure 2F), the average APS suspicion values of the
control group are 11.1% ± 17.8% and 6.4% ± 15.0%, respec-
tively, whereas the scores are 91.5% ± 17.6% and 95.3% ±
16.9% in the APS group. Figure 2G-H show that NN01 scored the
highest on negative predictive value (98.4%) and sensitivity
(97.9%), whereas NN03 had the highest accuracy in positive
predictive value (95.8%) and specificity (96.9%).

Clinical validation

The clinical validation cohort consisted of 33 patients with APS
and 62 control participants, both on VKA treatment (Table 1
“Clinical validation cohort”). Patients with APS were significantly
younger than control participants (average age, 47 vs 69 years;
P < .001) and more predominantly female (73% vs 18%; P <
.0001). Ninety-four percent of patients with APS suffered from
prior thrombotic events, compared with 13% of the control par-
ticipants (P < .001). LA was detected in 88% of patients with APS,
and aCL antibodies were present in 76% and aβ2-GPI antibodies in
81% of patients with APS.

TG and TD were measured to establish a separate validation
cohort for the APS-diagnosing neural network (Figure 3). Lag time
velocity index (E) was significantly higher. (F) The inhibitory effect of TM on the peak

eters PCtot (G), thrombin-AT (T-AT) complex formation (J), T-α2M formation (K)

s significantly increased in patients with APS (H), and the PCmax was less sensitive to

tients with APS than controls. Differences between group means were analyzed using

and interquartile ranges.
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(Figure 3A) and time-to-peak (Figure 3C) were significantly pro-
longed in patients with APS. The peak height (Figure 3B), ETP
(Figure 3D), and velocity index (Figure 3E) were reduced in
patients with APS compared with controls. Moreover, the peak
height in patients with APS was significantly less sensitive to TM
compared with controls (Figure 3F). The lower TG in patients with
APS can be explained by a lower PCtot (Figure 3G), a lower PCmax

(Figure 3H), and a higher thrombin inactivation capacity
(Figure 3L). Additionally, the process of PC showed a marked TM
resistance in patients with APS (Figure 3I).

TG and TD data obtained in the clinical validation cohort were used
to clinically validate the 2 top-performing neural networks, NN01
and NN03 (Table 3). Although NN01 and NN03 showed compa-
rable performance accuracies in the developmental cohort, NN01
showed a better performance in the clinical validation phase. NN01
showed an overall accuracy of 91.6% for the diagnosis of APS
from a group of anticoagulated control participants. The positive
and negative predictive values of the neural network were 87.9%
and 93.5%, respectively. The sensitivity of NN01 was 87.9%, and
the specificity was 93.5%. As expected for the performance results
of the developmental phase, NN02, NN04, and NN05 were inferior
in performance to NN01.

A limitation of the currently developed neural network could be that
it is trained to distinguish between patients with APS and controls
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4
on VKA therapy. However, VKA therapy is not only used in patients
who experienced thrombosis, but also, for example, in patients
suffering from atrial fibrillation. Subsequently, a history of throm-
bosis was uncommon in the VKA therapy control groups of the
developmental and clinical validation cohorts (1% and 13%,
respectively).

However, the suspicion of APS often arises when patients suffer
from a thrombotic event, which requires the administration of
anticoagulant therapy. Therefore, we analyzed a second non-APS
control group consisting of patients who experienced thrombosis
before our study (Table 1).

Figure 4 gives an overview of the performance of NN01 in the
classification of patients into patients with APS or control par-
ticipants (Figure 4A) and a population of thrombosis control
participants (Figure 4B). NN01 correctly classified 29 of 33
patients with APS, 58 of 62 control participants, and 28 of 38
thrombosis control participants. ROC analysis was used to
determine the diagnostic accuracy of the neural network. The
ROCAUC was 0.93 (CI, 0.87-1.00) for the detection of patients
with APS from a control cohort. For individual variables in the
clinical validation cohort, the ROCAUC varied from 0.67 (CI,
0.54-0.79) for ETP to 0.95 (CI, 0.92-1.00) for T-α2M complexes
(supplemental Table 1; supplemental Figure 2). For the throm-
bosis control cohort, the ROCAUC was 0.86 (CI, 0.77-0.95) for
ANTIPHOSPHOLIPID SYNDROME DIAGNOSIS BY AI 941
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Table 3. The quantification of performance of neural networks NN01

and NN03 in the clinical validation phase

NN01 NN03

Positive predictive value (%) 87.9 85.3

Negative predictive value (%) 93.5 93.4

Sensitivity (%) 87.9 87.9

Specificity (%) 93.5 91.9

Overall accuracy (%) 91.6 90.5

The positive and negative predictive values, sensitivity and specificity, and the overall
accuracy were determined for the neural networks NN01 and NN03 in the clinical validation
cohort in the clinical validation phase. Overall, NN01 showed the most accurate performance.
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the detection of patients with APS from a thrombosis control
cohort (Figure 4C-D).

Quantification of the average APS suspicion was significantly
higher in patients with APS (85% ± 31%) than in controls (13% ±
22%; P < .0001) and thrombosis controls (27% ± 42%; P <
.0001). The sensitivity of NN01 for the detection of APS was
87.9%, and the specificity was 93.5% for the control group and
73.7% for thrombosis controls (Figure 4G). The negative and
positive predictive values of NN01 for the detection of APS from a
control cohort were 93.5% and 87.9%, respectively, and 74.4%
and 87.9% for the detection of APS in a thrombosis cohort
(Figure 4H). Interestingly, there was a clear discrimination between
a certain subset of thrombosis controls, who had very high APS
suspicion percentage (>88%; n = 10) compared with the
remainder of the group (<22%; n = 23; Figure 4F). Ten of 38
thrombosis controls were classified as patients with APS, even
though aPL testing at the treating hospital did not reveal positivity
for the APS diagnostic criteria. Sixty percent of the patients were
male, and they were aged 51.2 years on average. One patient
experienced arterial thrombosis, whereas 9 patients experienced
venous thrombosis: 4 patients suffered from deep venous throm-
bosis, 2 from pulmonary embolism, and 3 from cerebral thrombosis.
Each sample was further tested for aCL and aβ2-GPI antibodies
using 4 different platforms. All tests were negative except for 1
patient who was positive on 1 of 4 platforms. Additionally, anti-PS/
PT antibodies were detected in another patient.

Discussion

APS is currently diagnosed based on clinical manifestations and
laboratory findings.3,32 However, thrombosis is a major clinical
problem in APS, and therefore, patients are frequently treated with
anticoagulants for a long duration.33,34 Moreover, APS is often
suspected after the occurrence of a thrombotic event, a period
when patients are treated with anticoagulants.23,34 The laboratory
assays that are currently used for LA, one of the aPL tested as a
Figure 3 (continued) patients with APS than controls, whereas the velocity index (E) was

APS compared with controls. (G-K) TD parameters PCtot (G), T-AT complex formation (J)

was significantly decreased in patients with APS, and the PCmax was less sensitive to the i

patients with APS than controls. Differences between group means were analyzed using the

and interquartile ranges.
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laboratory criteria, are hampered by the interference of anticoag-
ulant therapy.22 Therefore, intermission of the anticoagulant ther-
apy is one of the options for adequate diagnosis of APS in patients
who experience thrombosis.23

The TG test is a global hemostasis assay,35 and the TG profile is
known to be increased in patients at risk of thrombosis.36 TG is
higher in patients with APS, although APS-related changes in a
single TG parameter are not sufficient for an APS diagnosis.13 In
this study, we confirmed that although TG and TD parameters differ
on average between patients with APS and controls, it is not
possible to differentiate between patients with APS and controls
based on a single TG or TD parameter due to the significant
overlap in TG and TD values between patients and controls.
Therefore, the application of the neural network methodology is of
interest for the classification of patients with APS, because this
allows to integrate all collected data and develop a neural network
that can make an accurate classification of patients with APS
based on the combination of TG and TD parameters.10

Previously, we developed a neural network to diagnose APS based
on the TG profile.10 This neural network was trained on participants
who did not use anticoagulants. Nonetheless, both anticoagulated
and nonanticoagulated patients with APS were diagnosed correctly
in almost all cases. In this study, we have developed and validated a
neural network that accurately diagnoses APS specifically in VKA-
anticoagulated participants, based on TG-related parameters.

Neural network NN01 diagnosed anticoagulated patients with APS
accurately based on TG and TD parameters in the developmental
cohort (sensitivity, 98%; specificity, 95%) and the clinical validation
cohort (sensitivity, 88%; specificity, 94%). The negative predictive
values of 98% and 94% in the developmental and validation
cohorts, respectively, indicate that NN01 precisely rules out APS in
suspected participants. ROC analysis revealed that combining
parameters in a neural network, results in a more accurate diag-
nosis than a diagnosis based on single parameters. Although some
individual parameters significantly differed between patients with
APS and controls, these results were not transferrable between
different cohorts of patients with APS (supplemental Table 1),
except for the effect of TM on TG peak height and TD PCmax.

The generalization of the neural network in a separate cohort of
patients and controls is pivotal in the neural network approach. In
this study, we have shown the generalizability of our neural network
in a second cohort of patients with APS and controls. We validated
the 2 top-performing neural networks for the diagnosis of APS in
anticoagulated participants, which led to the conclusion that NN01
can accurately differentiate between patients with APS-related
thrombosis and patients with thrombosis unrelated to laboratory
indicators of APS. The sensitivity of NN01 for the detection of APS
in a group of control participants or patients with thrombosis is
comparable, whereas the specificity of the neural network is lower
for thrombosis controls than normal controls. This finding indicates
significantly higher. (F) The inhibitory effect of TM was significantly less in patients with

, and T-α2M formation (K) were significantly lower in patients with APS. (H) PCmax

nhibitory actions of TM (I). (L) The thrombin decay capacity was significantly higher in

Mann-Whitney test. *P < .05; ***P < .001; ****P < .0001. Data are shown as median
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that hemostatic changes occur in patients suffering from
APS-related thrombosis vs APS-unrelated thrombosis, which can be
picked up by the neural network.37 The TG assay is used to detect
hypocoagulability and hypercoagulability, and its outcome is, there-
fore, expected to be associated with a bleeding or thrombotic
phenotype, respectively.35 Therefore, it can be assumed that the
predictions of NN01 depend at least in part on the detection of APS-
related hypercoagulability, because the network is based on TG and
TD input parameters. Indeed, we found a significant association
between a prolonged TG lag time and the APS suspicion score
(supplemental Figure 3), indicating that changes in the TG profile
that are associated with APS could contribute to the diagnostic
neural network. Lower peak height and shorter lag time in patients
with APS could be in part caused by the younger age of patients
than that of controls.38 Typically, the lag time is slightly prolonged at
older age, and the TG peak height is increased.38 However, patients
with APS were also more resistant to the actions of TM, which
usually occurs more at an older than at a younger age.39

A limitation of this study is the relatively low number of APS sam-
ples, which can be attributed to the low prevalence of APS in the
population. Additionally, because pregnancy morbidity and throm-
bosis are clinical diagnostic criteria for APS, the majority of patients
diagnosed with APS is female and younger than patients with
thrombosis due to other causes, or control patients using VKA due
to other indications.
944 de LAAT-KREMERS et al
In this study, we show a proof-of-principle for the use of neural
network methodology in the fields of APS and TG. For application
in the clinic, this method should be further investigated and vali-
dated in a larger, preferably prospective study in patients under-
going APS diagnostic testing. Nevertheless, we believe it is
important to share our findings that neural network analysis can
support the classification of samples of patients with APS and
normal controls based on hypercoagulability testing. This is a novel
finding, because the current APS diagnosis strategy solely relies on
aPL testing and clinical criteria. Moreover, the current diagnostic
laboratory assays for APS have other limitations for diagnostic
laboratories, such as the interassay variation in aPL antibody
assays,6 the complexity of the 3-step LA assay,24 and the need to
interrupt anticoagulant therapy.23 In contrast, this neural network
only requires a TG assay without the need to interrupt anti-
coagulation. Harmonization and standardization efforts are
ongoing40 to aid the implementation of TG assays into clinical
laboratories. In the future, TG assay will become more available for
patient management, and the current artificial intelligence–based
approach should be helpful for clinical decision-making.

In conclusion, NN01 diagnoses APS with an accuracy of 92% in
VKA-anticoagulated individuals. The current neural network
approach could be thought of as an initial screening tool to identify
patients at risk of APS, although further research is needed to
achieve this goal. If a patient is considered at risk by the neural
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4
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network, further laboratory testing for APS could be advised. In this
analyses, we show that the neural network is quite accurate in
ruling out patients who are negative for the laboratory criteria of
APS (normal and thrombosis controls). Moreover, because APS is
diagnosed based on both laboratory and clinical criteria, a diag-
nosis can only be achieved when a patient fulfills at least 1 of the
clinical criteria. Therefore, this neural network could be of interest
to investigate participants who are positive for laboratory criteria
but lack clinical criteria. It is interesting to investigate in a pro-
spective study setup whether these patients do meet the clinical
diagnostic criteria in the future, that is, whether they experience
pregnancy morbidity or thrombosis. Therefore, future prospective
studies are needed to further validate NN01 for the diagnosis of
APS.
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