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Key Points

• BT does not have a
significant influence on
response rates,
progression-free
survival, and overall
survival for patients
who receive axi-cel.

• BT with radiation
results in similar
outcomes as
nonradiation-based BT.
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During the manufacturing period of autologous chimeric antigen receptor (CAR) T-cell

therapy, patients may experience a decline in their condition due to cancer progression.

In this study, we investigated the impact of bridging therapy (BT) on the outcome of

patients with relapsed/refractory large B-cell lymphoma who received antilymphoma

treatment between leukapheresis and axicabtagene ciloleucel (axi-cel) infusion. We

conducted our analysis using data from the multicenter US Lymphoma CAR-T

Consortium, with a median follow-up of 33 months (range, 4.3-42.1). Out of the 298

patients who underwent leukapheresis, 275 patients received axi-cel. A total 52% of

patients (n = 143) who received BT had a higher baseline risk profile than patients who

did not receive BT, and these patients, as a group, had inferior outcomes compared with

those who did not receive BT. However, after propensity score matching between the 2

groups, there were no statistically significant differences in overall response rate (77%

vs 87%; P = .13), complete response rate (58% vs 70%; P = .1), progression-free survival

(hazard ratio [HR], 1.25; P = .23), and overall survival (HR, 1.39; P=.09) between the BT

group and the no-BT group, respectively. Analyzing the effects of BT in the whole cohort

that underwent leukapheresis regardless of receiving axi-cel (intention-to-treat analysis)

showed similar results. Radiation BT resulted in outcomes similar to those observed with

nonradiation BT. Our findings suggest that BT may be safe without a significant impact

on long-term survival for patients who require disease stabilization during the

manufacturing period. Moreover, our results suggest that there is no clear advantage to

using radiation-based BT over nonradiation-based BT.
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Introduction

Three autologous anti-CD19 chimeric antigen receptor (CAR) T-cell
products, including axicabtagene ciloleucel (axi-cel), tisagenlecleu-
cel (tisa-cel), and lisocabtagene maraleucel (liso-cel), are approved
for treatment of relapsed/refractory large B-cell lymphoma (R/R
LBCL) on the basis of the pivotal ZUMA-1, JULIET, and TRAN-
SCEND clinical trials.1-3 For all 3 products, patients first undergo
leukapheresis to obtain autologous T cells for manufacturing and
then need to wait as their T cells are expanded and genetically
engineered to express the anti-CD19 CAR construct. The dration of
the manufacturing period varies depending on the manufacturer’s
capacity and the processes used. For example, in the ZUMA-1
clinical trial, the time from leukapheresis to the delivery of axi-cel to
the receiving institution was 17 days.1 In the JULIET trial, the time
from enrollment to tisa-cel infusion was 54 days,2 and in the
TRANSCEND trial,3 the time from leukapheresis to liso-cel infusion
was 24 days. Similarly, bridging therapy (BT), defined as anti-
lymphoma therapy delivered after leukapheresis and before the start
of lymphodepleting chemotherapy, was not allowed in ZUMA-1 but
was administered to 92% of patients in JULIET and 59% of patients
in TRANSCEND. It remains unclear whether BT affects the subse-
quent outcomes of CAR T-cell treatment, particularly for axi-cel.
Possible outcomes of BT could be a reduction in tumor volume
and/or an improvement in patient status, but BT may also be toxic or
ineffective. We previously reported the outcomes of 298 patients
who underwent leukapheresis with the intention to receive standard-
of-care axi-cel in a multicenter consortium.4 In this study, we con-
ducted an analysis of our large multicenter cohort to gain a better
understanding of the outcomes observed in patients who received
BT compared with outcomes in those who did not receive BT during
axi-cel manufacturing.

Methods

Patients

Seventeen academic centers located in the United States partici-
pated in this study. Each of the participating centers obtained
independent institutional review board approval for observational
retrospective analysis of their patients, and the study was con-
ducted in accordance with the Good Clinical Practice guidelines of
the International Conference on Harmonization. All authors
contributed to the conduct of the study, data analyses, and writing
of the manuscript. We conducted both intention-to-treat (ITT) and
modified ITT (mITT) analyses. The mITT analysis included all
patients who received axi-cel, whereas the ITT analysis included all
patients who underwent leukapheresis, regardless of whether they
ultimately received an axi-cel infusion. We present the results of the
mITT analysis in the main manuscript and the results of the ITT
analysis in the supplemental Data. The cohort of 298 patients who
underwent leukapheresis with the intention of standard-of-care axi-
cel, as of 30 September 30 2018, was previously described.4 All
axi-cel infusions occurred between November 2017 and
November 2018.

Definitions

BT is defined as any lymphoma-directed treatment administered
after leukapheresis and before the initiation of lymphodepleting
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4
chemotherapy and a CAR T-cell infusion. The treating physician
determined whether BT was admistered as well as the type of BT
provided. The type of BT was categorized as (1) chemotherapy, (2)
corticosteroids, (3) radiation, or (4) targeted therapies. When more
than 1 category was used in combination, the patient was assigned
to the highest category based on the following hierarchy: chemo-
therapy, targeted therapy, radiation, and corticosteroids. Use of
rituximab was not considered in the categorization (ie, corticoste-
roids plus rituximab was categorized as corticosteroids). Details of
the individual regimens given and their categorization are listed in
supplemental Table 1.

Statistical analysis

Descriptive statistics include mean, standard deviation, median,
and range for continuous variables, such as age, frequency
counts, and percentages, and for categorical variables, such as
stage and response status. The distributions of baseline demo-
graphic and clinical characteristics between patients in bridging
vs no-BT groups were compared using Fisher exact test, χ2

square test, analysis of variance, or Kruskal-Wallis rank sum test,
as appropriate. Univariate and multivariable logistic regression
models were fitted to assess the effect of important covariates on
response status (complete response [CR] or overall response
rate [ORR]). The variables that had a P value < .2 from the uni-
variate analysis were included in the initial multivariable model. A
backward selection method was used, and a significant level of .2
was set as the criterion for a variable to stay in the multivariate
model. Collinearity diagnostics were performed on the final
models and indicated no collinearity problem. Kaplan-Meier
product limit method was used to estimate progression-free sur-
vival (PFS) and overall survival (OS), and log-rank test was used
to evaluate the difference in PFS or OS between the BT and no-
BT groups. Multivariable Cox proportional hazards models were
also performed for PFS and OS, with the backward selection
procedure as described above to retain important and significant
covariates. The Schoenfeld residual was used to check the pro-
portional hazards assumption. Collinearity diagnostics were per-
formed for the final models and indicated no collinearity problem.
To validate the results of the multivariate analysis of the Cox
model, we performed a matched pair comparison of a subset of
closely matched patients selected based on propensity score
(PS) matching. Key factors included in PS matching were 7 var-
iables significant in multivariate analysis of OS or PFS (sex,
Eastern Cooperative Oncology Group [ECOG] status, stage,
number of lines of therapy, refractory, prior autologous stem cell
transplant, and lactate dehydrogenase [LDH] at conditioning) and
3 variables that were significant in univariate OS/PFS and
significantly imbalanced between groups (ZUMA-1 eligibility,
Lymphoma International Prognostic Index score [IPI] score, and
bulky disease). For each treated case, a matched control was
identified as the one with the closest distance (within 0.25 ×
standard deviation of the PS in the treatment group). The afore-
mentioned analyses were performed on both mITT and ITT
cohorts. PS matching was also performed to compare outcomes
in patients who received radiation-based BT vs in those who
received nonradiation-based BT in both the mITT and ITT cohorts.
All data analyses were performed using SAS 9.4 (SAS Institutes,
Cary, NC), and statistical significance was defined as a two-tailed
P value < .05 for all analyses.
BRIDGING VS NO BRIDGING THERAPY IN AXI-CEL 1043
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Results

Patient characteristics

Of the 298 patients who underwent leukapheresis, 23 patients did
not receive axi-cel, 20 declined in performance status or died from
disease progression before CAR T cells could be administered, 1
was deferred because of a serious infection, 1 was deferred
because of renal failure, and 1 had nonmeasurable disease after
BT with steroids. Of the 275 patients who received axi-cel (infused
or mITT cohort), 143 patients (52%) had received BT. The median
time from leukapheresis to initiation of lymphodepleting chemo-
therapy was 26 days in the whole cohort. Of the 298 who under-
went leukapheresis or the ITT cohort, 160 patients (54%) received
BT. Although 89% of patients (143 of 160) who underwent leu-
kapheresis followed by BT ended up receiving axi-cel, 96% of
patients (132 of 138) of patients with no BT after leukapheresis
ended up receiving axi-cel infusion (Figure 1).

Patients who received BT had a higher proportion of high-risk baseline
characteristics than those who did not (Table 1). These included poor
performance status (ECOG status ≥ 2), higher IPI scores, higher
rates of bulky disease, a higher LDH level, and higher rates of patients
not meeting ZUMA-1 eligibility criteria (Table 1).

Response and survival

Unadjusted PFS (hazard ratio [HR], 1.61; 95% confidence interval
[CI], 1.18-2.18; P = .002) and OS (HR, 2.04; 95% CI, 1.42-2.92;
P < .001) periods were shorter in the BT group than in the no-BT
group (Figure 2A-B). In multivariate analysis, after correcting for
confounding factors (including sex, ECOG, stage, number of lines
of therapy, refractory, prior autologous stem cell transplant, LDH at
conditioning, bulky disease, and meeting all the eligibility criteria for
ZUMA-1), there was no longer a difference in PFS (HR, 1.13;
95% CI, 0.8-1.6; P = .481) or OS (HR, 1.47; 95% CI, 0.99-2.18;
P = .053) between the BT and no-BT groups. After axi-cel infusion,
patients in the no-BT group had a significantly higher complete
Leukapheresis for planned standard of care axi-cel CAR T cell therapy
as of 9/30/2018 (N = 298)

Bridging therapy (N = 160)
Chemotherapy (N = 88)
Radiation (N = 19)
Targeted therapy (N = 16)
Corticosteroids (N = 37)

Did not proceed to CAR T
infusion (N = 17)

Axi-cel CAR T infusion
(N = 143)

No bridging therapy
(N = 138)

Did not proceed to CAR T
infusion (N = 6)

Axi-cel CAR T infusion
(N = 132)

Figure 1. Distribution of patients based on BT.
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response (CR) rate (70% vs 59%; P = .04) and a numerically
higher ORR that did not reach statistical significance (87% vs
79%; P = .08) (Figure 2C) than those in the BT group. PS
matching analysis showed no statistically significant differences in
PFS (HR, 1.25; P = .23), OS (HR, 1.39; P = .09), ORR, and CR
rates between the BT and no-BT groups (Figure 2D- F).

Toxicities

The toxicities among patients who received BT vs no BT in the mITT
group are listed in Table 2. After axi-cel infusion, patients in the BT
group had similar rates of severe (grade 3 or higher) cytokine release
syndrome (CRS) (8% vs 5%; P = .35) and severe immune effector
cell–associated neurotoxicity syndrome (ICANS; 34%, vs 27%;
P = .2). However, the rate of intensive care unit (ICU) admission was
higher in the BT group (42% vs 23%; P = .001), as was the median
duration of hospital stay (mean, 18.5 vs 15.7 days; P = .04).
Although data on cytopenia were not collected, the use of gran-
ulocyte colony-stimulating factor (G-CSF) after CAR T-cell therapy
was higher in the BT group (48% vs 33%; P = .01; Table 2). After
PS matching, there were no statistically significant differences in
rates of grade 3 or higher CRS and grade 3 or higher ICANS, use of
G-CSF, rates of ICU admission, and duration of hospital stay
between the BT vs no-BT groups (Table 2).

As of the data cutoff on 11 July 2021, a total of 129 patients in the
mITT cohort had died, and of those, 82 patients (64%) had
received BT. Nine patients (7%) in the BT group and 3 (2%) in the
no-BT group died of nonrelapse causes.

Effects of BT subtypes on outcomes

Bridging therapies were provided at the discretion of the treating
physician, resulting in variation in dosing, modalities, and regimens
used (supplemental Table 1). To facilitate analysis, we categorized
the BT regimens (mITT N = 143) used into chemotherapy (n = 72),
targeted therapy (n = 15; ie, lenalidomide, ibrutinib, etc), radiation
therapy only (n = 19), and corticosteroids (n = 37). No significant
difference was observed in the PFS (median PFS, 6.2, 5.1, 6.0, and
4.5 months, respectively, with univariate P = .88 and multivariate
analysis P = .75) and OS (median OS, 19.6, 14.9, 11.4 months for
the first 3 groups and not reached for corticosteroids, with univariate
P = .37 and multivariate analysis P = .64) among patients who
received bridging chemotherapy, targeted therapy, radiation therapy,
and corticosteroids, respectively (Figure 3A-B). In addition, we
compared BT regimens that included radiation therapy (RT bridging)
(N = 26) with all other BT regimens combined (non-RT bridging) (N =
117). RT bridging group in this analysis included 19 patients who
received only bridging radiation therapy and 7 patients who received
bridging radiation plus another systemic therapy and were then
infused with axi-cel (mITT). Given the potential confounding variables
associated with the use or nonuse of radiation as BT, we used PS
matching to identify a group of 44 subjects from the non-RT bridging
group who had matched baseline characteristics to 24 subjects who
received RT bridging. After PS matching, no statistically significant
differences were observed in PFS, OS, ORR, or CR rates between
the RT bridging and non-RT bridging groups (Figure 3C-E).

ITT analysis

We conducted an ITT analysis comparing BT (n = 160) vs no BT
(n = 138) for all patients who underwent leukapheresis, regardless
of whether they ultimately received axi-cel infusion (Figure 1).
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4



Table 1. Baseline characteristics of patients who received axi-cel in the mITT cohort

Covariate

Before PS matching After PS matching

Level No BT, N = 132 (%)

BT,

N = 143 (%) P value No BT, N = 97 (%) BT, N = 97 (%) P value

Age ≥65 y 32 31 .85 35 29 .37

Sex Female 38 32 .26 30 33 .64

ECOG score 2-4 7 24 <.001 9 12 .49

Stage III or IV Yes 74 88 .004 87 84 .68

IPI 3-5 36 66 <.001 48 54 .47

Prior lines of therapy ≥3 70 75 .34 70 68 .76

Refractory disease Yes 72 78 .28 71 75 .51

Bulky disease Yes 13 29 .001 17 21 .58

Prior auto-SCT Yes 37 28 .1 32 32 >.99

Met ZUMA-1 eligibility Yes 70 51 .002 64 61 .66

Double or triple hit Yes 17 23 .16 19 24 .5

Cell or origin Non-GCB 47 45 .77 44 46 .9

LDH at conditioning <200 27 13 .01 22 17 .96

200-300 21 24 26 26

300-500 23 27 25 26

≥500 24 32 24 27

Auto-SCT, autologous stem cell transplant; non-GCB, germinal center B cell.
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Figure 2. PFS, OS, and response to axi-cel in the mITT cohort. Kaplan-Meier curves of PFS and OS. Curves start at the time of axi-cel infusion and are stratified

according to BT. Unadjusted mITT analyses compare the n = 132 patients without BT with the n = 143 patients who received BT. After PS matching, n = 97 patients were

matched and compared in each group. Unadjusted PFS and OS (A,B) and PFS and OS after adjustment for baseline characteristics with PS matching (D,E). The ORR and CR

rates in the mITT cohort before matching (C) and after PS matching (F). CART, CAR T-cell therapy.
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Table 2. Outcomes and toxicities after axi-cel in the mITT cohort

Covariate

Before PS matching After PS matching

No BT, N = 132 BT, N=143 P value No BT, N = 97 BT, N = 97 P value

CRS grade ≥3 5% 8% .35 6% 7% >.99

CRES/ICANS grade ≥3 27% 34% .2 28% 32% .64

Need for G-CSF 33% 48% .01 32% 42% .18

ICU admission 23% 42% .001 25% 37% .09

Mean duration of hospital stay (d) 15.7 18.5 .04 16 18 .33

CRES, CAR-related encephalopathy syndrome.
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Baseline characteristics of the leukapheresis/ITT cohort are listed
in supplemental Table 2. After PS matching, the ITT analysis yiel-
ded results similar to those of the mITT analysis. No statistically
significant differences were observed between the BT and no-BT
groups in terms of ORR, rate of CR, PFS, OS, rates of grade 3
and higher CRS and grade 3 and higher ICANS, need for G-CSF,
rates of ICU admission, and duration of hospital stay (supplemental
Table 3; supplemental Figure 1). On analyzing the effects of
different subtypes of BT, there was no difference in PFS and OS
among patients who received bridging chemotherapy, targeted
therapy, radiation therapy, and corticosteroids (supplemental
Figure 2A-B). Additionally, we compared RT bridging (N = 27)
with non-RT bridging (N = 133). To address the potential
1.0
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0.2

0.0

0 3 6 9 12 15

Months post CART infusion

P = .88

PFS
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C19 13 10 7 6 6
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0.6

0.4

0.2
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0 3

A. Non-R
B. RT bri
HR = 1.2

44 34
24 21

D

Figure 3. Outcome after axi-cel stratified based on the category of BT. Kaplan-Meie

(B) comparing patients who received chemotherapy (chemo; n = 72), corticosteroids only

(targeted; n = 15). Kaplan-Meier curves depicting PFS (C) and OS (D) after PS matching s

CR rates in RT bridging vs non-RT bridging after PS matching (E).
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confounding variables associated with the use or nonuse of radi-
ation as BT, we used PS matching to identify a cohort of 43
subjects from the non-RT bridging group with similar baseline
characteristics to 25 subjects who received RT bridging. After PS
matching, there were no statistically significant differences in the
PFS, OS, CR rate, and ORR in RT bridging vs non-RT bridging
group on ITT analysis (supplemental Figure 2C-E).

Discussion

In this multicenter, retrospective study, we analyzed the charac-
teristics and outcomes of patients who received BT before axi-cel
infusion for R/R LBCL. We found that patients chosen to receive
0 3 6 9 12 15

Months post CART infusion

P = .37

A. chemo B. Steroids C. RT D. Targeted

OS

72 59 48 42 41 36 A
37 33 23 23 21 20 B
19 17 15 11 9 7 C
15 11 11 11 10 6 D

6 9 12 15

Months post CART infusion

T bridging
dging
7, P = .44

30 27 24 20 A
19 15 13 11 B

OS (PS matched) Response (PS matched)
RT Bridging Non-RT bridging

P = .89 
P = .06 77%78%

43%

67%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

ORR CR

E

r curves starting from the time of axi-cel infusion, showing unadjusted PFS (A) and OS

(steroids; n = 37), radiation therapy alone (RT; n = 19), and targeted therapies

tratified based on any RT (n = 24) bridging vs non-RT bridging (n = 44). The ORR and
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BT had a higher proportion of high-risk features for axi-cel failure,
including poor performance status, high IPI score, bulky disease,
and elevated LDH. In unadjusted analysis patients who received BT
and axi-cel in mITT had significantly worse PFS and OS and lower
CR rates. However, after multivariate analysis and PS matching to
adjust for differences in baseline characteristics between the 2
groups there was no significant difference between PFS, OS,
ORR, and CR rates. Although BT did not increase the risks of CAR
T-cell therapy, the types of BT used were also unsuccessful at
improving the outcomes of patients with high-risk features.

We attempted to determine whether any 1 type of BT was superior
to others. In our study, patients received bridging with 1 or more of
chemotherapy, corticosteroids, radiation, and targeted therapies.
Our analysis was limited by a relatively small sample size for each
category. Nevertheless, we found no statistically significant differ-
ences in the PFS or OS between the different types of BTs.

Previous preclinical studies have suggested that radiation therapy
could be a superior BT for patients receiving CAR T-cell therapy,
because of the abscopal effect it can create in radiated tissue and
tumor sites outside of the radiation field.5-7 However, in our study,
we found no statistically significant differences in treatment out-
comes between patients who received RT bridging and those who
received non-RT bridging, after performing PS matching to correct
for baseline confounding factors. Interestingly, patients who
received bridging radiation therapy had a numerically lower CR rate
than those who received other systemic BTs, even after PS
matching, but this difference did not reach statistical significance
(43% vs 67%, respectively; P = .06). It is important to note that our
study as limited by its retrospective nature, in that, no single dose
or schedule of radiation was used. In addition, we did not examine
differences between focal or comprehensive radiation, the latter
of which was recently shown to be associated with improved
CAR T-cell therapy efficacy in a single-center study.8

In our previous analysis of this cohort, we performed multivariable
modeling and found that bridging was a covariate associated with
worse OS but not PFS at an average follow-up of 12.9 months
after axi-cel infusion.9,10 We now find that, at longer follow-up,
there are no statistically significant differences in the PFS and
OS between BT and no-BT groups after multivariate analysis and
PS matching.

A limitation of retrospective data is that it cannot account for
unknown covariates; in this case, that may affect the propensity to
receive BT. To account for these covariates, in addition to per-
forming multivariate analysis, we conducted PS matching analysis,
comparing patients who received BT vs those who did not. Our PS
matching analysis showed no statistically significant differences in
treatment outcomes after axi-cel infusion between patients who
received BT and those who did not.

Given that the primary goal of BT was to keep the patient alive until
the CAR T cells could be manufactured, one could argue that to
fully assess the impact of BT, we should analyze its effects on
patients who underwent leukapheresis, regardless of whether they
ultimately received an axi-cel infusion. This type of analysis, known
as ITT analysis, would allow us to better evaluate the true impact of
BT. Our ITT analysis, which included all patients who underwent
leukapheresis, produced results similar to those of the mITT anal-
ysis, which included patients who ultimately received an axi-cel
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infusion. Specifically, we found no statistically significant differ-
ences in treatment outcomes between the BT and no-BTgroups in
the ITT analysis. Furthermore, our ITT analysis also showed no
significant differences in outcomes between the different sub-
groups of BT, including the comparison of radiation therapy vs
other BTs combined.

There is clearly a subset of patients who will require BTs, without
which they would die or not be able to receive CAR T cells;
however, identification of these patients at the time of leukaphe-
resis is difficult and frequently relies on clinical judgment. One of
the potential advantages of allogeneic CAR T cells is to provide an
off-the-shelf product that eliminates the bridging period. However,
allogeneic CAR T cells continue to have barriers in terms of
persistence, which is likely driven by host responses against the
donor CAR T cells, and it remains to be seen whether they can
match the efficacy of autologous CAR T cells.11

Although our study included only patients treated with axi-cel in the
standard-of-care setting, it is possible that bridging has a similar
effect for other CAR T-cell products for LBCL, including tisa-cel or
liso-cel. In the JULIET trial of tisa-cel, 92% of patients received
bridging, whereas in the TRANSCEND trial of liso-cel, 59% of
patients received BT.2,3 This is in contrast to ZUMA-1, in which BT
was not allowed before axi-cel infusion.1 However, for JULIET and
TRANSCEND, the manufacturing time periods were longer than for
ZUMA-1, and the decision to provide BT in JULIET and TRAN-
SCEND might have been different from that in our standard-of-care
axi-cel cohort.

Shahid et al recently reported that BT in a group of patients with
mainly LBCL and follicular lymphoma receiving 5 different types of
CAR T-cell therapies was not associated with differences in ORR,
CR rate, or PFS. However, they found that BT was associated with
inferior OS.12 Our study exclusively analyzed patients with LBCL
who all received axi-cel. Furthermore, in addition to multivariate
analysis, we performed PS matching to better assess the potential
impact of confounding variables on our findings.

Pinnix et al reported effects of BT in patients with large cell lym-
phoma receiving axi-cel at a single center.13 They reported no
differences in ORR, CR rate, PFS, and OS between BT vs no-BT
groups. On analyzing the different subtypes of BT, they reported
that radiation therapy was associated with improved PFS
compared with systemic BT. However, our analysis, which had a
larger cohort, a longer follow-up period ,and included PS matching
analysis, did not show any significant differences in treatment
outcomes between patients who received radiation BT and those
who received systemic BT.

Notably, this study did not include any patients who received BT
with polatuzumab vedotin, which, at the time of this study, was not
approved by the Food and Drug Administration. This antibody-drug
conjugate is reported to have an ORR of 70% when combined with
bendamustine among patients with R/R DLCBL.14 Our study is
limited to BTs available before 2019; therefore, none of our
patients received bridging with polatuzumab vedotin or other more
recently approved therapies. Further investigation is needed to
determine the impact of novel bridging strategies on the outcomes
of patients undergoing CAR T-cell therapy. Indeed, it has been
shown that response to BT is a predictor of post–CAR T-cell
therapy outcomes.15,16 In our standard-of-care study, patients were
BRIDGING VS NO BRIDGING THERAPY IN AXI-CEL 1047
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inconsistently restaged after BT, and we were, therefore, not able
to assess response rates to the various bridging strategies.

Another limitation is that events that are less frequent (specifically
ICU admission and deaths) may be underpowered to observe dif-
ferences. This is exacerbated by PS matching because patients
without matches are excluded. In unmatched analyses, ICU
admissions and nonrelapse mortality were higher in the bridging
group. After PS matching, the differences between groups were
smaller and did not meet the threshold for significance. Further
study of larger data sets are needed to determine if bridging
contributes to ICU admissions or deaths from nonrelapse mortality.

In summary, this study suggests that at long-term follow-up, current
bridging therapies do not significantly affect treatment outcomes
after CAR T-cell therapy, and bridging radiation therapy is not
superior to nonradiation BT. However, decisions to provide BT
should be carefully considered on an individual basis. Additional
studies are needed to determine whether any type of BT can
improve the outcomes of patients receiving autologous CAR T-cell
products.
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