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Molecular minimal residual disease (MRD) is an important disease biomarker for many hematological
malignancies, including non-Hodgkin (NHL) lymphomas, predicting disease recurrence and response to
therapy earlier than classical imaging-based detection methods.1-8 Although multiple approaches exist,
MRD detection through Ig-HTS using the clonoSEQ assay from Adaptive Biotechnologies (formerly
clonoSight from Sequenta, Inc before 20159) is increasingly integrated into clinical care for several
lymphoid malignancies. Using tumor-involved tissue, Ig-HTS assays identify the dominant V(D)J rear-
ranged heavy (IGH) or light chain (IGK/L) clonotype(s) that have undergone clonal expansion and are
expected to uniquely identify a patient’s tumor given the theoretical diversity at each rearranged
locus.10,11

The theoretical diversity at the human IgH and IgK/L loci represents the potential variety of antibody
molecules that can be generated through V(D)J recombination. The precise number of V, D, and J gene
segments in the human IgH locus can vary between individuals, but estimates include ~38-46 func-
tional V segments, 23 functional D segments, and 6 functional J segments.12 Considering only
combinatorial diversity using these estimates, the theoretically expected VDJ diversity at the human IgH
locus is ≈5796. In contrast, when considering the kappa and lambda immunoglobulin loci and the
corresponding average numbers of functional segments (40 Vκ, 5 Jκ, 30 Vλ, and 4 Jλ), we can estimate
substantially lower (~20-fold to 40-fold less) theoretical diversity in light chains.13

Several important prior studies have evaluated the performance of Ig-HTS techniques for MRD
detection.14-18 However, these studies have focused primarily on sensitivity and have not assessed
performance when separately considering the heavy and light chains, which substantially differ not only
in theoretical diversity (~20-40×, as detailed above), but also in their observed junctional mutation and
somatic hypermutation rates as paired clonotypes in B-cell malignancies.11,19 We therefore sought to
empirically evaluate the clinical specificity of Ig-HTS for heavy-chain and light-chain MRD measurement
in mature B-cell lymphomas.

All data were collected with informed consent from participants enrolled on studies approved by an
institutional review board in accordance with all ethical regulations at their respective institutions,
Stanford University (NCT00398177) or the National Cancer Institute (NCT00001563, NCT00001337,
and NCT00006436). We generated a repository of lymphoma clonotypes from B-cell tracking or
clonality reports of 284 patients with NHL, 129 of whom had undergone clonoSEQ profiling and 155 of
whom had undergone clonoSight profiling. A control database was generated from all publicly available
immuneACCESS20 (Adaptive Biotechnologies) heavy- and light-chain B-cell receptor (BCR)
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Figure 1. Ig-HTS clonotypic V(D)J sequence identity overlap analysis overview. (A) Histologic representation within the clinical cohort. (B) Schematic depication of

analyses performed. (C) Donut charts depicting the proportion of patients with unique or non-unique heavy chain (blue) and light chain (purple) clonotypes detected by clonoSEQ.

(D) Each column depicts a non-unique dominant lymphoma light chain clonotype, as determined by clonoSEQ. Each row represents an individual immunoSEQ BCR repertoire

from the control immuneACCESS database. The frequency at which the clonoSEQ clonotype occurs within each control repertoire is depicted in blue. Clonotypes not found in a

given control repertoire occupy white squares. The bottom bar chart sums up the percent of immuneACCESS subjects (out of 71 total) that overlap with each clonotype.
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Figure 2. V-J pairing analyses and somatic hypermutation assessment. V-J gene pairing for all IGL (A) and IGK (B) lymphoma clonotypes, in which a precise V and J gene

assignment could be made by HighV-Quest. Frequency is the number of times a given V-J gene pair is present in a non-unique clonotype over the total number of times that V-J

gene pair is seen across all the lymphoma clonotypes in the clinical database. Gray squares represent V-J gene combinations not present within the data set. For a large proportion

of clonotypes, HighV-Quest was unable to differentiate between IGLJ2*01, IGLJ3*01, and sometimes IGLJ3*02. These are grouped together in panel A when applicable as

depicted along the x-axis. Likewise, when HighV-Quest was unable to differentiate between a V gene and its ‘D’ paralog, these were grouped together in panel B. (C) Boxplot of

the percent identity to germline scores as determined by BLAT between heavy and light chain clonotypes. Clonotypes with no genomic match by BLAT to their respective heavy or

light chain region were assigned a percent identity score of zero.
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repertoires spanning malignant and healthy patient contexts (65
636 707 total clonotypes within the repertoires of 1769 subjects).

We assessed whether each lymphoma clonotype in the clinical
repository was also present in any of the public repertoires in the
control database. A match was considered positive if the sequence
context of the clinical clonotype was an exact substring of any
clonotype in the control database. Specificity was defined as the
percent of all clonotypes (or patients) that had no match within the
control database. V gene, J gene, and CDR3 assignments were
made using the HighV-Quest (IMGT) platform.21

To assess if the degree of somatic hypermutation or CDR3 rear-
rangement mediated the degree of overlap between the clinical
and control repertoires, the clinical lymphoma clonotypes were
mapped against the human genome (build GRCh38/hg38) via
BLAT22 (University of California, Santa Cruz), which allows for
spliced alignments. Percent identity to germline was determined by
dividing the highest BLAT match score23 by the length of the
clonotype. Clonotypes with no germline match were assigned a
percent identity score of zero.

We considered B-NHL cases profiled by Ig-HTS within a cohort
that included 227 patients with DLBCL, 32 mantle cell lymphoma,
13 follicular/transformed follicular lymphoma, 6 small lymphocytic
lymphoma/chronic lymphocytic leukemia, and 6 marginal zone
lymphoma (Figure 1A). The corresponding B-NHL clonotype
database included 350 heavy chain clonotypes from 235 patients
and 341 light chain clonotypes from 187 patients (Figure 1B). The
IGK/L subset consisted of 66 IGL sequences from 49 patients and
275 IGK sequences from 180 patients. Of the IGH clonotypes,
153 (43.7%) had been determined by the clonoSight assay from
115 subjects, whereas the remaining 197 (56.3%) sequences had
been determined by the clonoSEQ assay from 120 subjects. In the
light chain database, clonoSight sequencing data accounted for
104 (30.5%) clonotypes from 82 patients whereas clonoSEQ
accounted for 237 (69.5%) clonotypes from 105 patients. The
control database consisted of 71 light-chain repertoires with 618
775 BCR sequences and 1,698 heavy chain repertoires with 65
017 932 BCR sequences (Figure 1B).

Two IGH lymphoma clonotypes from 2 separate patients (both
sequenced with clonoSEQ) in the clinical database were also
present in the BCR repertoire of 1 control patient. Accordingly,
heavy chain MRD detection via clonoSEQ demonstrated a
sequence-level specificity of 99.0% and a patient-level specificity
of 98.3%. In comparison, 29 IGK/L clonotypes from 19 patients, all
of whom had been sequenced with clonoSEQ, demonstrated
overlap with 55 different control BCR repertoires (77% of all
control repertoires). The specificity of light chain MRD by clono-
SEQ was significantly lower than that of heavy chain: 87.8% at the
sequence-level (Fisher exact P value < .001) and 81.9% at the
patient-level (P < .001) (Figure 1C).

In 18.1% of patients, the IGK/L clonotypes that clonoSEQ had
identified as the dominant lymphoma clone were also present in the
unselected control BCR repertoire data from immunoSEQ, sug-
gesting a large percentage of tracked clonotypes could be present
within a patient’s healthy cells. Most non-unique clonotypes were
shared across multiple control subjects (range, 1-37; median, 12)
and present in the control database at a frequency ranging from
3.31 × 10-7 to 0.521 (median 9.44 × 10-5) (Figure 1D). Across
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3
both generations of Ig-HTS assays, precise V and J gene assign-
ments could be determined for 181 (53.1%) of all light chain clo-
notypes. HighV-Quest was able to identify a CDR3 junction in
65.5% of non-unique clonotypes and 63.1% of unique clonotypes
(Fisher exact P = .84). In terms of predicting clonotype uniqueness,
V and J gene usage patterns were unrevealing (Figure 2A-B).

We next sought to assess if the lack of specificity with the light
chain MRD assay could be related to biologic differences in the
degree of somatic hypermutation or rearrangement from baseline
during V(D)J recombination. Light chain clonotypes demonstrated
significantly greater identity to the human germline reference
sequence as determined by BLAT (mean percent identity 77.9%)
compared with heavy chain clonotypes (mean percent identity
51.4%) (Wilcoxon P < .001) (Figure 2C). Although this result fits
expectations, to our knowledge, this is the first study to demon-
strate that biologic differences in diversity drive observed differ-
ences in the clinical specificity of Ig-HTS assays and that the
magnitude of this effect is significant despite the intrinsic algo-
rithmic adjustments to the limit of detection threshold that these
assays include to attempt to account for differences in diver-
sity.16,18 The impact and magnitude of this association has not
been previously described and serves as a critical shortfall for
diagnostic products that are in routine clinical use when consid-
ering the unmet needs of the patients and providers relying on the
accuracy of the associated results. Further optimization and a
clinical benchmark of observed clinical specificity of these US Food
and Drug Administration–approved assays are needed. Our results
suggest that a positive light chain MRD result has a high false-
positive likelihood, suggesting impaired clinical utility to this
result. Caution should be exercised when using Ig-HTS to monitor
MRD when detection is driven by light chain.
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