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Key Points

• We developed a risk-
prediction model using
machine learning,
incorporating clinical
measurements
performed before and
after allo-HCT.

• By using longitudinal
data, we were able to
improve short- and
long-term mortality risk
prediction after allo-
HCT.
023-011752-m
ain.pdf by
Serial prognostic evaluation after allogeneic hematopoietic cell transplantation (allo-HCT)

might help identify patients at high risk of lethal organ dysfunction. Current prediction

algorithms based on models that do not incorporate changes to patients’ clinical condition

after allo-HCT have limited predictive ability. We developed and validated a robust

risk-prediction algorithm to predict short- and long-term survival after allo-HCT in pediatric

patients that includes baseline biological variables and changes in the patients’ clinical

status after allo-HCT. The model was developed using clinical data from children and young

adults treated at a single academic quaternary-care referral center. The model was created

using a randomly split training data set (70% of the cohort), internally validated (remaining

30% of the cohort) and then externally validated on patient data from another tertiary-care

referral center. Repeated clinical measurements performed from 30 days before allo-HCT to

30 days afterwards were extracted from the electronic medical record and incorporated

into the model to predict survival at 100 days, 1 year, and 2 years after allo-HCT.

Naïve-Bayes machine learning models incorporating longitudinal data were significantly

better than models constructed from baseline variables alone at predicting whether

patients would be alive or deceased at the given time points. This proof-of-concept study

demonstrates that unlike traditional prognostic tools that use fixed variables for risk

assessment, incorporating dynamic variability using clinical and laboratory data improves

the prediction of mortality in patients undergoing allo-HCT.
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Introduction

Allogeneic hematopoietic cell transplantation (allo-HCT) can potentially cure some individuals
with hematological disorders. However, treatment-related morbidity and mortality remain major
causes of therapeutic failure after allo-HCT. Organ dysfunction, opportunistic infections, and
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graft-versus-host disease (GVHD) are the most common causes
of death in the first 100 days after allo-HCT.1 However, organ
failure can be mitigated with prompt recognition and early
intervention, leading to improved long-term outcomes.2,3 Serial
evaluation of patients after allo-HCT for known modifiable risk
factors or predictive biomarkers might help identify patients at
high risk of organ dysfunction or other potentially lethal compli-
cations, enabling early interventions.

Several risk scores for predicting post–allo-HCT mortality, such as
the HCT–comorbidity index (HCT-CI), disease risk index (DRI),
disease-risk stratification system, and European Society for Blood
and Marrow Transplantation risk score, have been validated for
aiding clinical decision-making.4-6 However, the predictive accu-
racy of these scores remains suboptimal, especially for pediatric
recipients of allo-HCT.7-10 None of them include dynamic longitu-
dinal post–allo-HCT assessments, which could enhance the
discriminatory power of the biological variables available before
allo-HCT. However, incorporating numerous additional pre–allo-
HCT and post–allo-HCT variables to predict the mortality risk over
time would require a complex algorithm, making the statistical
analysis challenging.

We sought to overcome these limitations by developing an
algorithm to predict overall survival (OS) after allo-HCT that was
not only based on baseline biological variables collected before
allo-HCT but also incorporated the changes in patients’ clinical
status after allo-HCT, thus providing a longitudinal frame of
reference for risk prediction. We hypothesized that by using
longitudinal data in the form of clinical and laboratory values, in
addition to baseline variables, we could improve short-term and
long-term mortality risk prediction for allo-HCT recipients,
compared with risk prediction using baseline variables alone.
We further planned to use machine learning (ML) methodology
to accomplish this, using a data-driven strategy that identified
underlying patterns in the observations and integrated them
appropriately and precisely, instead of using a priori assumptions
or predefined statistical methods.
-011752-m
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Methods

Study design

This was a retrospective study conducted to model OS after allo-
HCT for pediatric patients. The primary objective was to predict
OS at 100 days after allo-HCT. Secondary objectives included
predicting OS at 1 and 2 years after allo-HCT. For these respective
objectives, mortality was defined as death from any cause by
100 days, 1 year, and 2 years after allo-HCT. Each end point of
interest was treated as a binary outcome. To leverage patients’
longitudinal clinical information before and after allo-HCT for OS
prediction, the observation window for incorporating repeated
clinical measurements in the model was set from 30 days before
allo-HCT to 30 days afterwards. Clinical measurements outside
this window were not included in this model. The predictive timeline
is illustrated in Figure 1. The study was approved by the St Jude
Children’s Research Hospital (St Jude) Institutional Review Board
and followed the Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis or Diagnosis reporting guideline
for prediction algorithm development.11 It was conducted in
accordance with the Declaration of Helsinki.
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3
Study population

Patients were eligible for inclusion in the internal training and vali-
dation cohorts if they underwent their first allo-HCT at St Jude
between 2000 and 2020. An external validation cohort consisted
of patients undergoing their first allo-HCT at Memorial Sloan Ket-
tering Cancer Center (MSKCC) between 2012 and 2020. Addi-
tional inclusion/exclusion criteria and details of the numbers of
patients who met the various criteria are shown in Figure 2.
Because this was a pragmatic study, the sample size was deter-
mined by the number of eligible patients who underwent allo-HCT
during the study period and not by a priori power calculations. Of
the 922 patients who underwent allo-HCT at St Jude between
2000 and 2020, 738 met the eligibility criteria and were included in
the study cohort.

Variables

Baseline variables, including recipient and donor characteristics, as
well as disease-related and allo-HCT–related factors, were extracted
from electronic medical records (EMRs) and a curated institutional
transplant database. Baseline variables are summarized in Table 1.
Multiple imputation using chained equations12 was performed on the
baseline variables to address potential bias and increased variance
in parameter estimates resulting from unknown predictors. All lon-
gitudinal variables were extracted from the EMRs, except for GVHD-
related data, which were extracted from the curated transplant
database. Nonnumeric longitudinal variables, such as microbial
surveillance, imaging reports, and measurement device descriptions,
were excluded from the analysis, given their subjective nature. To
model the trajectory of the longitudinal data over the observation
window, the repeated measurements were summarized in 6 sum-
mary statistics.13 Longitudinal summary statistics with missingness
after discretization were removed. The 46 longitudinal variables that
were initially considered, and their summary statistics that were
finally included in the analysis are listed in supplemental Table 1.

Model development and validation

Naïve-Bayes, which is a supervised classification technique used to
classify subjects by assigning class labels based on conditional
probability, was used to model OS.14 Details of the model devel-
opment and validation are provided in the supplemental Methods.
The predictive performance of the established naïve-Bayes model
was first validated on the internal validation data set based on
several performance metrics described in the supplemental
Methods. External validation of our established predictive models
was then performed using the validation data set from MSKCC.

Sensitivity analyses

Two separate sensitivity analyses were performed to test the
robustness of our prediction model pipeline. First, because patients
with active disease or primary refractory leukemia who are included
in the current St Jude data set are not considered candidates for
allo-HCT at many institutions, the predictive model was retrained by
excluding these patients and those with missing disease status
from the St. Jude data set. Second, to incorporate organ function
details available at baseline or before allo-HCT, another model was
created that incorporated any laboratory data collected between
days −30 and −7 as a part of the baseline variables. This new
model emulates HCT-CI, which incorporates organ function
assessments available at the time of allo-HCT. The performance
MACHINE LEARNING FOR SURVIVAL PREDICTION AFTER HCT 687
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Figure 1. Overall workflow of data analysis. Baseline variables and summary statistics of longitudinal measurements collected in the period from 30 days before allo-HCT to

30 days afterwards in the St Jude data set were included in the analysis. A total of 10 replicates of multiple imputation were performed for the missing baseline variables.

Each imputed data set was randomly split into 70% training data and 30% validation data for model construction and validation. Establishing the ML model involved 2 steps:

dimension reduction and model construction. Dimension reduction was performed by univariate logistic regressions. The top 50 variables with the smallest P values were selected

into model construction. The ML algorithm used for classification was a naïve-Bayes, which classifies subjects as predicted to be deceased or alive based on the conditional

probabilities. The constructed ML model was assessed on the validation data set according to different evaluation metrics (eg, Kaplan-Meier plots).

Underwent alloHCT at St. Jude during 2000-2020:
922 patients in total

Not first alloHCT:
91 excluded, 831 remained

Not BM/PBSC source of cells:
49 excluded, 770 remained

Solid tumor:
19 excluded, 751 remained

Missing HLA match information:
1 excluded, 750 remained

Survival days ≤ 30:
12 excluded, 738 remained

Underwent first alloHCT at St. Jude during 2000-2020,
Age < 21 years,
BM/PBSC source of cells,
Non-solid tumor,
HLA Match information available,
Survival days > 30:
738 patients remained

Age ≥ 21 years:
12 excluded, 819 remained

Figure 2. CONSORT diagram showing inclusion/exclusion criteria.

A total of 922 patients who underwent allo-HCT at St Jude between 2000 and

2020 were eligible for analysis. Inclusion criteria encompassed having

undergone their first allo-HCT, age < 21 years, use of bone marrow (BM) or

peripheral blood stem cells (PBSCs) as the cell source, a primary diagnosis

other than solid tumor, HLA match information available, and survival >30 days.

A total of 738 eligible patients satisfied these criteria and remained in the study

cohort.
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Table 1. Baseline characteristics and survival outcomes of patients in the entire St Jude data set, the St Jude training and validation data sets,

and the MSKCC data set

Characteristic

St Jude

full cohort (N = 738)

St Jude training

cohort (n = 517)

St Jude internal validation

cohort (n = 221)

MSKCC external validation

cohort (N = 218)

Transplantation period

2000-2004 183 (25%) 125 (24%) 58 (26%)

2005-2009 179 (24%) 118 (23%) 61 (28%)

2010-2014 181 (25%) 133 (26%) 48 (22%) 91 (42%)

2015-2020 195 (26%) 141 (27%) 54 (24%) 127 (58%)

Recipient characteristics

Time from diagnosis to allo-HCT, d 222 (122-688) 218 (120-681) 225 (127-748) 365 (0-822)

Unknown 50

Recipient age at allo-HCT, y 9.8 (3.9-15.0) 10.0 (4.0-15.0) 9.5 (3.6-14.7) 10 (3-15)

Recipient sex

Female 303 (41%) 209 (40%) 94 (43%) 83 (38%)

Male 435 (59%) 308 (60%) 127 (57%) 135 (62%)

Recipient race

Black 138 (19%) 100 (19%) 38 (17%) 38 (18%)

White 517 (70%) 361 (70%) 156 (71%) 130 (63%)

Other 82 (11%) 56 (11%) 26 (12%) 38 (18%)

Unknown 1 0 1 12

Recipient ethnicity

Hispanic or Latino 140 (19%) 104 (20%) 36 (16%) 40 (19%)

Not Hispanic or Latino 593 (81%) 408 (80%) 185 (84%) 171 (81%)

Unknown 5 5 0 7

Donor characteristics

Donor sex

Female 332 (47%) 237 (48%) 95 (45%) 43 (50%)

Male 370 (53%) 256 (52%) 114 (55%) 43 (50%)

Unknown 36 24 12 132

Donor-recipient sex

Female-female 146 (21%) 96 (19%) 50 (24%) 16 (19%)

Male-male 225 (32%) 151 (31%) 74 (35%) 27 (31%)

Female-male 145 (21%) 105 (21%) 40 (19%) 16 (19%)

Male-female 186 (26%) 141 (29%) 45 (22%) 27 (31%)

Unknown 36 24 12 132

Donor-recipient relatedness

Matched related 125 (27%) 82 (25%) 43 (30%) 64 (29%)

Matched unrelated 144 (31%) 101 (31%) 43 (30%) 72 (33%)

Mismatched related 172 (37%) 127 (39%) 45 (31%) 26 (12%)

Mismatched unrelated 30 (6.4%) 18 (5.5%) 12 (8.4%) 56 (26%)

Unknown 267 189 78

Disease characteristics

Diagnosis

ALL 224 (30%) 156 (30%) 68 (31%) 62 (28%)

AML 246 (33%) 183 (35%) 63 (29%) 52 (24%)

CML 30 (4.1%) 22 (4.3%) 8 (3.6%) 4 (1.8%)

Myelodysplastic syndrome 35 (4.7%) 22 (4.3%) 13 (5.9%) 13 (6.0%)

Other leukemias 14 (1.9%) 10 (1.9%) 4 (1.8%) 7 (3.2%)

For categorical variables, n (%) is shown; for numerical variable, median (interquartile range) is shown.
ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; CML, chronic myelogenous leukemia; PBSC, peripheral blood stem cell.
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Table 1 (continued)

Characteristic

St Jude

full cohort (N = 738)

St Jude training

cohort (n = 517)

St Jude internal validation

cohort (n = 221)

MSKCC external validation

cohort (N = 218)

Lymphoma 24 (3.3%) 12 (2.3%) 12 (5.4%) 11 (5.0%)

Aplastic anemia 51 (6.9%) 38 (7.4%) 13 (5.9%) 15 (6.9%)

Sickle cell anemia 27 (3.7%) 18 (3.5%) 9 (4.1%) 3 (1.4%)

Other nonmalignant disorder 87 (12%) 56 (11%) 31 (14%) 51 (23%)

Disease status at allo-HCT

Active (malignant) 109 (18%) 71 (17%) 38 (21%) 16 (7.3%)

Active (nonmalignant) 165 (28%) 112 (27%) 53 (30%) 69 (32%)

Remission (malignant) 324 (54%) 238 (57%) 86 (49%) 133 (61%)

Unknown 140 96 44

Transplant characteristics

Preparative regimen

Myeloablative 345 (67%) 245 (68%) 100 (66%) 192 (88%)

Reduced intensity 140 (27%) 99 (28%) 41 (27%) 7 (3.2%)

Nonmyeloablative 27 (5.3%) 16 (4.4%) 11 (7.2%) 19 (8.7%)

Unknown 226 157 69

Product type

Marrow 447 (61%) 313 (61%) 134 (61%) 85 (39%)

PBSC 291 (39%) 204 (39%) 87 (39%) 133 (61%)

Mortality outcomes

Deaths by 100 d after allo-HCT 60 (8.1%) 42 (8.1%) 18 (8.1%) 8 (3.7%)

Deaths by 1 y after allo-HCT 187 (25%) 121 (23%) 66 (30%) 25 (11%)

Deaths by 2 y after allo-HCT 233 (32%) 154 (30%) 79 (36%) 43 (20%)

For categorical variables, n (%) is shown; for numerical variable, median (interquartile range) is shown.
ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; CML, chronic myelogenous leukemia; PBSC, peripheral blood stem cell.
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metrics were then recalculated for the St Jude validation data set,
using the models established in these 2 sensitivity analyses.

Results

Patient characteristics

The baseline characteristics and survival outcomes of patients in
the entire St Jude cohort (N = 738), the St Jude training data set
(n = 517) and St Jude validation data set (n = 221), and the
MSKCC cohort (N = 218) are listed in Table 1. The median follow-
up duration for the entire cohort was 4 years (range, 0.1-21.7
years). The St Jude training and validation data sets were similar
with respect to the baseline variables. There were several signifi-
cant differences between the St Jude and MSKCC cohorts: the St
Jude cohort had greater proportions of White recipients; recipients
with mismatched related donors; and patients who received a
transplant for acute leukemia or had active disease at the time of
allo-HCT, received reduced-intensity conditioning, or received a
bone marrow graft (P < .05 for all comparisons). At each obser-
vation time point, the proportion of deceased patients was greater
in the St. Jude cohort than in the MSKCC cohort.

Prediction of OS

We created 3 naïve-Bayes–based models using the St Jude
training data set for predicting the 100-day, 1-year, and 2-year OS:
690 ZHOU et al
(1) a base-only model with all the baseline variables; (2) a
longitudinal-only model with only the longitudinal variables among
the top 50 selected predictors; and (3) the full model with the top
50 selected predictors, including both baseline and longitudinal
variables. The performance of these ML models was first internally
validated on the St Jude validation data set and then externally
validated on the MSKCC data set. Figure 3 illustrates the mean
area under the curve (AUC) values, obtained by bootstrapping 500
times on the St Jude validation data set, based on the predictions
of the 3 models for the different end points. The longitudinal-only
and full models significantly outperformed the base-only model in
predicting all 3 end points of interest, with substantially higher AUC
values that were all significantly different (Figure 3).

To evaluate further the performance of the models in predicting OS
at different time points, we plotted the survival probabilities of patients
classified as deceased or alive by the models based on the internal
validation data set, using Kaplan-Meier plots (Figure 4). When pre-
dicting OS at 100 days, the longitudinal-only and full models
improved the stratification of the patients classified as deceased or
alive, with the P values obtained from the log-rank tests being
6.16 × 10−11 and 5.64 × 10−13, respectively, significantly lower than
that of the base-only model (P = 8.32 × 10−2; a smaller P value
indicates better stratification). The full and longitudinal models simi-
larly outperformed the base-only model by achieving better stratifi-
cation of patients classified as deceased or alive at 1 and 2 years.
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3
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Figure 5 shows a detailed ranking based on the Shapley Additive
exPlanations (SHAP)15 values of the predictive importance of
the baseline and longitudinal predictors in the full model when
predicting different end points of interest. Only 1 baseline vari-
able (transplantation year) and a few pre–allo-HCT laboratory
values, such as mean serum albumin, total protein, bilirubin,
calcium levels, slope of the change in blood urea nitrogen, and
total protein and albumin, were among the important variables
for predicting 100-day OS. All other predictors that ranked
higher in terms of SHAP values for the 100-day OS prediction
were longitudinal variables collected after allo-HCT. Although
several other baseline variables, such as graft source and donor,
degree of HLA match, and disease diagnosis and status,
emerged as being among the more important variables for pre-
dicting longer-term OS (at 1 and 2 years after transplant), the
longitudinal laboratory values remained among the most impor-
tant predictors of survival.

Sensitivity analyses

Detailed results of the sensitivity analyses are provided in the
supplemental Results. Briefly, in the first sensitivity analysis, after
excluding patients with active or refractory disease or missing
disease status from the model training, the full model performed the
best of the 3 in predicting 100-day OS, and it outperformed the
base-only model in predicting 1-year and 2-year OS (supplemental
Figures 1 and 2). In the second sensitivity analysis, the predictive
ability of the new base-plus model, which incorporated the latest
available laboratory data collected between days −30 and −7 as a
part of the baseline variables, surpassed that of the base-only
model. However, the longitudinal-only and full models, which
include more comprehensive longitudinal information, still out-
performed the base-plus model in predicting all 3 end points of
interests (100-day, 1-year, and 2-year OS) (compare supplemental
Figures 3 and 4 with Figures 3 and 4).
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3
External validation

Detailed results of the external validation are provided in the
supplemental Material. Briefly, the full model outperformed the
others in predicting 100-day and 1-year OS in the MSKCC cohort
(supplemental Figures 5 and 6). Although the full-model AUC was
slightly smaller than that obtained with the base-only model when
predicting long-term OS (ie, 2-year OS), the overall results are
consistent with our findings based on the St Jude validation cohort.

A demonstration of the validated model is available at https://
sjbiostat.shinyapps.io/pedsHCT/.

Discussion

This cohort study showed that ML models developed by incorpo-
rating longitudinal data collected from 30 days before to 30 days
after allo-HCT can accurately predict short-term (100-day),
intermediate-term (1-year), and long-term (2-year) OS of pediatric
patients undergoing their first allo-HCT. When compared with
models constructed from baseline variables alone, the ML models
incorporating longitudinal data were better at discriminating
between patients predicted to be deceased or alive at the given
time points. Importantly, unlike traditional prognostic tools that use
fixed variables for risk assessment, our model incorporates dynamic
variability in the clinical and laboratory data, which is critical for
improving mortality prediction.

Risk stratification of patients based on biological and clinical fac-
tors to predict treatment outcomes and guide treatment decisions
is a cornerstone of modern oncology. Many such risk-prediction
models are currently used in allo-HCT practice. The HCT-CI
assigns weights to a composite of 17 baseline organ function
criteria present before allo-HCT to predict nonrelapse mortality
after allo-HCT.5 Adding more comorbidities while adapting the
HCT-CI for pediatric patients did not enhance its discriminative
MACHINE LEARNING FOR SURVIVAL PREDICTION AFTER HCT 691
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capacity.16 Although adding pre–allo-HCT laboratory assessments
such as ferritin, albumin, and platelet count augmented the HCT-
CI,17 it only improved the concordance statistic of the score
marginally.18 These observations not only suggest the limitations of
using only the fixed baseline variables at the time of allo-HCT for
risk prediction but also indicate that including biomarkers might be
key to improving prediction capabilities. The DRI and disease-risk
stratification system use a patient clinical status agnostic
approach to risk-categorize patients based on the disease diag-
nosis, clinical status, or molecular and cytogenetic data.6,19 The
European Society for Blood and Marrow Transplantation risk score
combines some components of the HCT-CI (age) and DRI (dis-
ease stage) and adds some new allo-HCT–related factors (donor
details) to the model.4 Although the score remains predictive of
outcomes, the incidence of treatment-related mortality is strongly
influenced by the allo-HCT conditioning regimen intensity.4

Notably, none of these risk scores incorporate the impact of the
conditioning regimen intensity on the patients into the prediction
692 ZHOU et al
algorithm, even though the conditioning regimen is well-known to
be an important predictor of post–allo-HCT outcomes.20 Addi-
tionally, their predictive accuracy is limited because of the inherent
shortcomings of the components included and the statistical
methodology used.7-10

The advent of artificial intelligence and ML offers the opportunity to
integrate health data from various sources into personalized patient
risk assessments. Many ML methods are readily applicable to com-
plex clinical scenarios, including high-dimensional or even unstruc-
tured data involving complex interactions. Early attempts to apply ML
algorithms to EMR data have demonstrated their power to accurately
predict short-term mortality in general medicine21,22 and oncology
settings.23-26 Similar attempts have been made to use large data sets
to predict short-term mortality and complications such as GVHD after
allo-HCT in adult patients.13,27-30 But to our knowledge, none have
integrated longitudinal assessments in outcome prediction. Here, we
created a naïve-Bayes model that incorporated numeric longitudinal
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3
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Figure 5. SHAP values of variables included in the full models predicting 100-day, 1-year, and 2-year OS. The SHAP values were calculated as the average across the

replicates and bootstraps. Baseline variables are in red, longitudinal variables collected before allo-HCT are in purple, and longitudinal variables collected after allo-HCT are in

black. Abbreviations: ALL: acute lymphocytic leukemia; ALT: alanine aminotransferase; AML: acute myeloid leukemia; AST: aspartate aminotransferase; BMI: body mass index;

BUN: blood urea nitrogen; CML: chronic myeloid leukemia; CO2: carbon dioxide or bicarbonate; CRP: C reactive protein; D Bilirubin: direct Bilirubin; GVHD: graft versus host

disease; HLA: human leucocyte antigen; K+: potassium; LDH: lactate dehydrogenase; NDFT: non-uniform discrete Fourier transform; SD: standard deviation.
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laboratory values and clinical data to supplement the predictive ability
of baseline demographic, disease-related, and allo-HCT–related
factors that are traditionally used for survival prediction. Naïve-Bayes
was chosen for the model construction mainly because it does not
require extensive training data and because it is highly scalable with
numerous predictors.14 It is fast and can be used to make real-time
694 ZHOU et al
predictions, which will be crucial for its future implementation as a
clinical decision-making tool.

Adding the longitudinal variables significantly improved the predictive
ability of the model compared with using baseline variables alone. The
AUC values of the receiver operating characteristic curves were
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consistently higher for the models incorporating the longitudinal vari-
ables than for the model including baseline variables only. The
improvement in OS prediction with the inclusion of longitudinal infor-
mation does, however, tend to decrease over time from the 100-day
prediction to the 2-year prediction. This decrease in the
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3
discriminatory power of the models incorporating the longitudinal var-
iables at later time points after allo-HCT is probably due to the relatively
short window of observation for the longitudinal variables, which was
limited to 30 days after allo-HCT for all prediction time points in this
study. By extending the window of observation of longitudinal variables
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to, perhaps, 6 months after allo-HCT or later, we may further improve
the prediction of OS at 1 and 2 years after allo-HCT.

By examining the SHAP values of individual variables, we identified
significant predictors that contributed to a given patient being clas-
sified as deceased or alive. Many variables with known prognostic
implications, such as disease diagnosis, disease status, donor-
recipient HLA matching, graft source, and serum albumin and
ferritin levels before allo-HCT, were highly predictive of outcomes in
the different models. Unsurprisingly, variables such as markers of liver
function (serum albumin, total protein, and serum bilirubin) and kidney
function (blood urea nitrogen), serum electrolytes, lactate dehydro-
genase levels, and blood glucose, collected before or after allo-HCT,
also proved to be highly predictive. When the SHAP values were
compared across prediction time points, the SHAP values of the
different longitudinal measurements, most of which were collected
after allo-HCT, were much higher than those of the baseline variables,
suggesting that the longitudinal variables are much more important for
predicting OS. In certain instances, risk factors that were not explicitly
indicated in the model also were noted to be highly predictive. For
example, the number of tests performed to check for direct bilirubin
after allo-HCT ranked very highly in the models predicting 100-day
and 1-year mortality. Veno-occlusive disease or sinusoidal obstruc-
tion syndrome of the liver is a known complication of allo-HCT that is
associated with high mortality. One of the signs of development of
veno-occlusive disease in a patient after allo-HCT is rising serum
bilirubin. It is likely that clinicians caring for patients at risk of devel-
oping veno-occlusive disease assessed their direct bilirubin more
often than patients who were not at such risk. Even though veno-
occlusive disease was not explicitly included as a risk factor for
mortality in this model, the ML algorithm was able to identify this trend
and thus included the number of tests for direct bilirubin after allo-
HCT as a prominent predictor in the model. Although some of
these covariates (such as the number of tests performed for direct
bilirubin assessment or the standard deviation of CO2 and chloride
which may indicate acid-base imbalance) might be quite obvious
clinically, some others (such as number of tests for magnesium after
allo-HCT) may not be as biologically relevant immediately. This is one
of the main strengths as well a noted limitation of data-driven
methods: the algorithms can identify predictors that otherwise
would not be selected based on our current knowledge, but some-
times the underlying biological mechanism may not be apparent. More
importantly, these observations suggest not only that dynamic longi-
tudinal variables can supplement the predictive ability of the static
baseline variables but also that these long-term measurements
reflecting changes in clinical status have much more discriminatory
power to identify patients who are likely to have poor outcomes, even
at distal time points. This provides an excellent window of opportunity
during which intensive supportive-care measures to prevent further
organ dysfunction or improve organ function might be instituted,
thereby improving patient outcomes. Our future endeavors will focus
on predicting these adverse events, such as organ dysfunction, and
complications such as GVHD after allo-HCT, which eventually lead to
mortality, therefore helping clinicians institute appropriate measures to
mitigate these adversities.

The results of this study must be considered in light of the following
limitations. First, this was a retrospective analysis based on data
routinely collected during patient care. Accordingly, several baseline
variables weremissing for some patients, and these had to be imputed
to generate a complete data set for training and validation. Although
696 ZHOU et al
using multiple imputations, rather than a single “best guess,” might
have enhanced the model calibration and avoided over-fitting on
imputed values, any nonrandom missingness may still bias results.
Second, the model was developed on a data set from a single aca-
demic quaternary-care referral center, which may limit its generaliz-
ability. However, we validated our results on an external data set with
very different patient characteristics (from MSKCC) with similar pre-
diction accuracy, highlighting the model’s robustness. Even though
the St Jude and MSKCC data sets differed significantly in several
critical baseline variables, the model was highly discriminatory when
applied to the MSKCC data set, underscoring the fundamental prin-
ciples on which the model is based. Third, this model did not include
recipients of allogeneic umbilical cord blood grafts or autologous
hematopoietic stem cell rescue or those who received an allo-HCT for
a solid tumor as the indication. There were too few patients in the
training cohort who met these criteria and, hence, limited outcome
information can be robustly and reliably extracted from these cova-
riates. Hence, these patients were excluded from the model devel-
opment, and the results may not be generalizable to them.

To our knowledge, this is the first report of ML being used to
identify allo-HCT recipients at risk of short-term or long-term mor-
tality by incorporating longitudinal data collected during clinical
care before and after allo-HCT. This proof-of-concept study high-
lights the importance of incorporating longitudinal post–allo-HCT
data in these prediction algorithms. Prospective validation of this
model will enable the development of a clinical decision support
tool to complement clinical intuition and enable clinicians to deliver
evidence-informed care based on real-time patient data and
thereby improve clinical outcomes.
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