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The Wilms tumor 1 (WT1) gene, located at locus 11p13, is a tumor suppressor gene that encodes a
zinc-finger transcription factor.1,2 The presence of WT1 gene mutation (mWT1) among adult patients
with acute myeloid leukemia (AML) has been associated with poor prognoses.1,3 Outcomes of allo-
geneic stem cell transplantation (alloSCT) in patients with mWT1 AML have been explored in only a few
studies limited by small sample size and inclusion of other gene mutations.4-7 The goal of this study was
to determine factors affecting post-alloSCT survival in patients with mWT1 myeloid neoplasms.

We retrospectively reviewed patients with mWT1 myeloid neoplasms, as defined by the World Health
Organization.8 The study was approved by the Mayo Clinic institutional review board and conducted in
accordance with the Declaration of Helsinki. Patients with ≥2 WT1 mutations were deemed to have
multihit WT1 (mhWT1) mutations. Given the limited sample size, we decided a priori upon variables
deemed important from previous transplantation studies9-14 to be included in stepwise regression
analysis and arrived at the final multivariate model. Please refer to supplemental Methods for a detailed
description of methods.

A total of 6887 patients were tested, and 75 (1.1%) patients were found to harbor a WT1 mutation. Fifty-
six (74.7%) had AML, 7 (9.3%) had myelodysplastic syndrome (MDS), 6 (8%) had mixed phenotypic
acute leukemia (MPAL), and 6 (8%) patients had other myeloid neoplasms. Median age at diagnosis was
60 years (interquartile range [IQR], 42-67 years). Among patients with MDS, 4 (57.1%) had MDS with
increased blasts (MDS-IB): 3 (42.9%) had MDS-IB2 and 1 (14.3%) had MDS-IB1. Median overall survival
(OS) for the entire cohort was 1.9 years (95% confidence interval [CI], 1.45-2.42).

A total of 33 (44%) patients (21 [63.6%] males) underwent alloSCT at a median age of 44 years (IQR,
33-62 years). Twenty-five (75.8%) patients had AML, 3 (9.1%) had MDS, 2 (6.1%) had MPAL, and 3
(9.1%) had other myeloid neoplasms (supplemental Table 1). The median time to alloSCT after diag-
nosis was 6 months (IQR, 4-16 months). Twenty-seven (81.8%) patients were in complete remission
(CR)/CR with incomplete count recovery at the time of alloSCT, 7 (21.2%) of whom were in second CR
or beyond, whereas 5 (18.2%) patients, including 2 with AML and 1 with MPAL, had active disease.
Post-alloSCT maintenance therapy was used in 13 (39.4%) patients, 8 (61.5%) of whom had a FLT3
mutation (supplemental Table 2; supplemental Figure 1).

Five (15.2%) patients only had a WT1 mutation, whereas 28 (84.8%) had at least 1 other comutated
gene (Figure 1A). Twenty-one (63.6%) patients were found to have WT1 at initial diagnosis, whereas
12 (36.4%) of the patients were found to have a WT1 mutation at first relapse or later (supplemental
Table 3). The median number of comutations in the 28 patients was 2 (range, 1-5). The most frequently
comutated gene was FLT3 (n = 15, 45.4%): 12 (80%) had FLT3–internal tandem duplication and
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Figure 1.
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Figure 1 (continued) Genetic landscape and clinical outcomes of patients with WT1-mutated myeloid neoplasms undergoing alloSCT. (A) Oncoplot depicting

comutations associated with WT1. Thirteen of 33 patients had mhWT1. (B) Lollipop plot showing position of mutations among 33 patients. Two hot spots were observed: codons

301-303 and codons 312-314. (C) Variant allele frequency (VAF) of top 10 mutated genes. (D) Post-alloSCT non-relapse mortality (NRM) and RI of the entire cohort. (E) Post-alloSCT

NRM and RI stratified by single or mhWT1 mutations. (F) Multivariate competing risk regression analysis for relapse among patients undergoing alloSCT. (G) Cumulative incidence of

NRM and relapse stratified byWT1mutations and associated clonal architecture. (H) DFS after alloSCT, stratified by mhWT1. (I) Multivariate Cox proportional hazard analysis for 3-year

DFS after transplantation in patients with mWT1 AML. (J) Multivariate Cox proportional hazard analysis for 3-year OS after transplantation. *None of the patients had a very high DRI.
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3 (20%) had FLT3–tyrosine kinase domain mutations. Several
studies have shown that mWT1 AML is associated with FLT3
mutations.15-17 High-risk comutations such as BCOR or TP53
were rare (1 [3.3%] patient each). Thirteen (39.4%) patients had
mhWT1 (Figure 1A; Table 1). Two hot-spot regions were found:
codons 301 to 303 (7 [21.2%] patients), and codons 312 to 314
(13 [42.4%] patients; Figure 1B). Median WT1 variant allele fre-
quency for patients undergoing alloSCT was 30% (IQR, 12%-
42%; Figure 1C).

The cumulative relapse incidence (RI) was 21.1% at 100 days,
50.7% at 1 year, and 57.1% at 3 years after alloSCT (Figure 1D).
Patients with mhWT1 had higher post-alloSCT RI at 100 days
(38.5% vs 10%), 1 year (76.9% vs 35.6%), and 3 years (88.5% vs
35.6%; P = .007; Figure 1E).

In multivariate analysis, mhWT1 (hazard ratio [HR], 9.3; 95% CI,
2.9-29.8; P < .001), matched-related donor, and high disease risk
index (DRI) were associated with an increased risk of posttrans-
plant relapse (Figure 1F). We then studied the impact of mhWT1
mutations in cis vs in trans/multiple clones on relapse. Of the 13
patients with mhWT1, 7 (53.8%) hadWT1 mutations either in trans
564 RESEARCH LETTER
or had multiple WT1 clones, whereas the clonal architecture could
not be determined in 6 (46.2%) patients with mhWT1. Patients
with mutations in trans/multiple clones had a significantly higher RI
than patients with mhWT1 with indeterminate clonal architecture,
or a single WT1 mutation (1-year RI, 100% vs 33.3% vs 35.6%,
P = .001; and 3-year RI, 100% vs 66.7% vs 35.6%, P = .001;
supplemental Figure 1G).

Among patients with AML, those with mhWT1 had an inferior
3-year disease-free survival (DFS; 3-year DFS, 0% vs 42.7%;
P = .07; Figure 1H). Data on multiparameter flow cytometry–
based minimal residual disease (MRD) testing were available in
14 (56%) patients with AML, 8 (57.1%) of whom were MRD
negative (supplemental Table 4). Patients with MRD positive or
unknown status before transplantation had a significantly higher
relapse rate than patients who were MRD negative at 1 year
(66.7% vs 63.6% vs 0.00%; P = .03) and 3 years (not applicable
[NA] vs 72.7% vs 0.00%; P = .02) after alloSCT (supplemental
Figure 2). Multivariate analysis showed that a high DRI was
associated with an inferior DFS (HR, 51.73; 95% CI,
4.14-645.96; P = .002). Although mhWT1 was associated with
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3



Table 1. Characteristics and outcomes of patients with mWT1 stratified by single WT1 or mhWT1

Variable

mhWT1

P value

No Yes

(n = 20) (n = 13)

Age at diagnosis, y

Median (min, max) 46.8 (18.4, 67.5) 42.7 (26.7, 71.8) .85

Age at alloSCT, y

Median (min, max) 48.0 (18.7, 68.0) 44.1 (27.5, 72.2) .8

Sex

Female 9 (45.0%) 3 (23.1%) .36

Male 11 (55.0%) 10 (76.9%)

Ethnicity

Caucasian 17 (85.0%) 11 (84.6%) 1

Other 3 (15.0%) 2 (15.4%)

WT1 first detected

Initial diagnosis 14 (70.0%) 7 (53.8%) .57

Relapse 6 (30.0%) 6 (46.2%)

Disease characteristics

Disease

AML 15 (75%) 10 (76.9%) .39

MDS 1 (5%) 2 (15.4%)

MPAL 1 (5%) 1 (7.7%)

Others 3 (15%) 0 (0%)

Hemoglobin ≥ 10 g/dL at diagnosis

No 17 (85.0%) 11 (84.6%) 1

Yes 2 (10.0%) 1 (7.7%)

Missing 1 (5.0%) 1 (7.7%)

Platelets ≥ 100 × 103/μL at diagnosis

No 12 (60.0%) 10 (76.9%) .42

Yes 7 (35.0%) 2 (15.4%)

Missing 1 (5.0%) 1 (7.7%)

Abnormal karyotype at diagnosis

No 8 (40.0%) 8 (61.5%) .47

Yes 11 (55.0%) 5 (38.5%)

Missing 1 (5.0%) 0 (0%)

Monosomy 7 at diagnosis

No 18 (90.0%) 13 (100%) 1

Yes 1 (5.0%) 0 (0%)

Missing 1 (5.0%) 0 (0%)

Complex karyotype at diagnosis

No 16 (80.0%) 13 (100%) .38

Yes 3 (15.0%) 0 (0%)

Missing 1 (5.0%) 0 (0%)

Monosomal karyotype at diagnosis

No 18 (90.0%) 13 (100%) 1

Yes 1 (5.0%) 0 (0%)

Missing 1 (5.0%) 0 (0%)

maxWT1 VAF

Median [min, max] 34.5 [4.00, 84.0] 33.0 [12.0, 49.0] .66

ATG, anti-thymocyte globulin; BCNU, carmustine; Bu, busulfan; CRi, complete remission with incomplete count recovery; Cy, cyclophosphamide; Flu, fludarabine; GVHD, graft-versus-host
disease; HCT-CI, hematopoietic stem cell transplant comorbidity index; max, maximum; Mel, melphalan; min, minimum; MRD, matched related donor; MMUD, mismatched unrelated donor;
MUD, matched unrelated donor; PT, posttransplant; TBI, total body irradiation; TLI, total lymphoid irradiation; VAF, variant allele frequency.
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Table 1 (continued)

Variable

mhWT1

P value

No Yes

(n = 20) (n = 13)

Isolated WT1 (no comutation)

No 15 (75.0%) 13 (100%) .14

Yes 5 (25.0%) 0 (0%)

mWT1 in codons 301-303

No 19 (95.0%) 7 (53.8%) .02

Yes 1 (5.0%) 6 (46.2%)

mWT1 in codons 312-314

No 14 (70.0%) 5 (38.5%) .15

Yes 6 (30.0%) 8 (61.5%)

mWT1 in zinc-finger motif

No 17 (85.0%) 11 (84.6%) 1

Yes 3 (15.0%) 2 (15.4%)

CR/CRi at alloSCT

No 2 (10.0%) 3 (23.1%) .64

Yes 17 (85.0%) 10 (76.9%)

Missing 1 (5.0%) 0 (0%)

DRI

Low 3 (15%) 1 (7.7%) .83

Intermediate 13 (65%) 9 (69.2%)

High 3 (15%) 2 (15.4%)

NA 1 (5%) 1 (7.7%)

Comutations

ASXL1

No 17 (85.0%) 13 (100%) .40

Yes 3 (15.0%) 0 (0%)

BCOR

No 19 (95.0%) 13 (100%) 1

Yes 1 (5.0%) 0 (0%)

CEBPA

No 17 (85.0%) 9 (69.2%) .52

Yes 3 (15.0%) 4 (30.8%)

CSF3R

No 19 (95.0%) 12 (92.3%) 1

Yes 1 (5.0%) 1 (7.7%)

DNMT3A

No 19 (95.0%) 10 (76.9%) .31

Yes 1 (5.0%) 3 (23.1%)

FLT3

No 14 (70.0%) 4 (30.8%) .06

Yes 6 (30.0%) 9 (69.2%)

IDH1

No 19 (95.0%) 12 (92.3%) 1

Yes 1 (5.0%) 1 (7.7%)

IDH2

No 19 (95.0%) 13 (100%) 1

Yes 1 (5.0%) 0 (0%)

ATG, anti-thymocyte globulin; BCNU, carmustine; Bu, busulfan; CRi, complete remission with incomplete count recovery; Cy, cyclophosphamide; Flu, fludarabine; GVHD, graft-versus-host
disease; HCT-CI, hematopoietic stem cell transplant comorbidity index; max, maximum; Mel, melphalan; min, minimum; MRD, matched related donor; MMUD, mismatched unrelated donor;
MUD, matched unrelated donor; PT, posttransplant; TBI, total body irradiation; TLI, total lymphoid irradiation; VAF, variant allele frequency.
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Table 1 (continued)

Variable

mhWT1

P value

No Yes

(n = 20) (n = 13)

GATA2

No 19 (95.0%) 12 (92.3%) 1

Yes 1 (5.0%) 1 (7.7%)

JAK2

No 19 (95.0%) 12 (92.3%) 1

Yes 1 (5.0%) 1 (7.7%)

KRAS

No 19 (95.0%) 13 (100%) 1

Yes 1 (5.0%) 0 (0%)

NPM1

No 18 (90.0%) 11 (84.6%) 1

Yes 2 (10.0%) 2 (15.4%)

NRAS

No 17 (85.0%) 12 (92.3%) .93

Yes 3 (15.0%) 1 (7.7%)

PHF6

No 19 (95.0%) 13 (100%) 1

Yes 1 (5.0%) 0 (0%)

PTPN11

No 19 (95.0%) 11 (84.6%) .69

Yes 1 (5.0%) 2 (15.4%)

RUNX1

No 18 (90.0%) 9 (69.2%) .29

Yes 2 (10.0%) 4 (30.8%)

SF3B1

No 20 (100%) 11 (84.6%) .29

Yes 0 (0%) 2 (15.4%)

SRSF2

No 19 (95.0%) 13 (100%) 1

Yes 1 (5.0%) 0 (0%)

TET2

No 18 (90.0%) 12 (92.3%) 1

Yes 2 (10.0%) 1 (7.7%)

TP53

No 19 (95.0%) 13 (100%) 1

Yes 1 (5.0%) 0 (0%)

ZRSR2

No 19 (95.0%) 13 (100%) 1

Yes 1 (5.0%) 0 (0%)

Transplantation characteristics and outcomes

HCT-CI ≥ 3

No 11 (55.0%) 9 (69.2%) .65

Yes 9 (45.0%) 4 (30.8%)

ATG, anti-thymocyte globulin; BCNU, carmustine; Bu, busulfan; CRi, complete remission with incomplete count recovery; Cy, cyclophosphamide; Flu, fludarabine; GVHD, graft-versus-host
disease; HCT-CI, hematopoietic stem cell transplant comorbidity index; max, maximum; Mel, melphalan; min, minimum; MRD, matched related donor; MMUD, mismatched unrelated donor;
MUD, matched unrelated donor; PT, posttransplant; TBI, total body irradiation; TLI, total lymphoid irradiation; VAF, variant allele frequency.
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Table 1 (continued)

Variable

mhWT1

P value

No Yes

(n = 20) (n = 13)

Conditioning intensity

Myeloablative 12 (60.0%) 8 (61.5%) 1

Reduced intensity 7 (35.0%) 5 (38.5%)

Missing 1 (5.0%) 0 (0%)

Conditioning

Bu/Cy 4 (20.0%) 1 (7.7%) NA

Bu/Flu 4 (20.0%) 3 (23.1%)

Bu/Flu/ATG 1 (5.0%) 0 (0%)

Cy/Flu/thiotepa/TLI 2 (10.0%) 0 (0%)

Cy/TBI 2 (10.0%) 2 (15.4%)

Flu/Mel 4 (20.0%) 4 (30.8%)

Flu/TBI 2 (10.0%) 1 (7.7%)

Bu/Cy/ATG 0 (0%) 1 (7.7%)

Flu/BCNU/Mel 1 (5%) 1 (7.7%)

Graft source

Peripheral blood 18 (90.0%) 13 (100%) 1

Bone marrow 1 (5.0%) 0 (0%)

Missing 1 (5.0%) 0 (0%)

Donor type

MRD 5 (25.0%) 1 (7.7%) .36

MUD 11 (55.0%) 9 (69.2%)

MMUD 0 (0%) 1 (7.7%)

Haploidentical 4 (20.0%) 2 (15.4%)

Major/bidirectional ABO mismatch

No 15 (75.0%) 10 (76.9%) 1

Yes 4 (20.0%) 3 (23.1%)

Missing 1 (5.0%) 0 (0%)

GVHD prophylaxis

CD34 selection 1 (5.0%) 0 (0%) .16

Tacrolimus + methotrexate (± ATG) 13 (65%) 9 (69.3%)

Cyclosporine + methotrexate 2 (10.0%) 1 (7.7%)

Tacrolimus + mycophenolate 3 (15.0%) 0 (0%)

PT-Cy based 0 (0%) 3 (23.1%)

None 1 (5.0%) 0 (0%)

Grade 2-4 acute GVHD

No 17 (85.0%) 10 (76.9%) .9

Yes 3 (15.0%) 3 (23.1%)

Grade 3-4 acute GVHD

No 13 (65.0%) 12 (92.3%) .17

Yes 7 (35.0%) 1 (7.7%)

Moderate/severe chronic GVHD

No 18 (90.0%) 11 (84.6%) 1

Yes 2 (10.0%) 2 (15.4%)

ATG, anti-thymocyte globulin; BCNU, carmustine; Bu, busulfan; CRi, complete remission with incomplete count recovery; Cy, cyclophosphamide; Flu, fludarabine; GVHD, graft-versus-host
disease; HCT-CI, hematopoietic stem cell transplant comorbidity index; max, maximum; Mel, melphalan; min, minimum; MRD, matched related donor; MMUD, mismatched unrelated donor; MUD,
matched unrelated donor; PT, posttransplant; TBI, total body irradiation; TLI, total lymphoid irradiation; VAF, variant allele frequency.
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an inferior DFS, it was not statistically significant (HR, 2.31;
95% CI, 0.73-7.34; P = .16; Figure 1I).

Median follow-up after alloSCT was 3.6 years (95% CI, 1.69-NA).
Median OS for the entire cohort was 1.31 years (95% CI, 1.12-NA)
and was similar to that of patients with mWT1 AML undergoing
alloSCT (median OS, 1.45 years; 95% CI, 1.12-NA; P = .81;
supplemental Figure 3). Post-alloSCT 3-year OS was comparable
among patients with AML vs those with non-AML disease (median,
1.45 vs 1.2 years; P = .57). Multivariate analysis confirmed that a
high DRI was associated with a worse 3-year OS (HR, 17.91;
95% CI, 2.19-146.28; P = .007), whereas mhWT1 was not
associated with OS (HR, 1.59; 95% CI, 0.48-5.34; P = .45;
Figure 1J).

Our study shows that the majority of patients with mWT1 myeloid
malignancies have either acute leukemia or MDS-IB. These findings
have been reported previously.18,19 We found a high post-alloSCT
RI in this subset of patients. Luskin et al evaluated 112 patients
with AML, 8 of whom had mWT1, and found that mWT1 was
associated with an increased post-alloSCT relapse (HR, 2.07;
P = .07).6 Similarly, Quek et al also reported that mWT1 was
associated with an increased risk of relapse (HR, 4.81; P = .018).7

Most importantly, we found that mhWT1 was associated with a
high relapse rate, particularly among those with mutations in trans
or with multiple WT1 clones. Further studies involving single-cell
sequencing will help confirm this finding.

Although mhWT1 was not associated with an inferior post-alloSCT
OS, there was a trend toward poor DFS. Likely, the early relapse
detection through MRD and molecular-based studies and
improved postrelapse treatment strategies influenced postrelapse
survival. Post-alloSCT maintenance therapy was associated with a
numerically superior 3-year post-alloSCT OS (median, 21 vs
11 months; P = .16) and DFS (median, 13 vs 7 months; P = .39;
supplemental Figure 4). We did not find any specific comutation
confounding the effect of mhWT1 on post-alloSCT relapse
(supplemental Table 5). Post-alloSCT survival was similar among
patients with WT1 mutation detected at initial diagnosis vs at
relapse (median OS, 1.31 vs 1.23 years; P = .61).

Some of the limitations of our study include its retrospective nature
and the small sample size.

In conclusion, this is, to our knowledge, the first study evaluating
posttransplant outcomes in patients with WT1-associated myeloid
malignancies. Our study shows that patients with WT1 mutation
are at a high risk of posttransplant relapse, particularly patients with
mhWT1 and, most importantly, those with mhWT1 mutations in
trans or multiple WT1 clones. Post-alloSCT survival is poor, pre-
dominantly driven by relapse. Larger studies are needed to validate
these findings.
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