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Rh phenotype matching reduces but does not eliminate alloimmunization in patients with

sickle cell disease (SCD) due to RH genetic diversity that is not distinguishable by serological

typing. RH genotype matching can potentially mitigate Rh alloimmunization but

comprehensive and accessible genotyping methods are needed. We developed RHtyper as an

automated algorithm to predict RH genotypes using whole-genome sequencing (WGS) data

with high accuracy. Here, we adapted RHtyper for whole-exome sequencing (WES) data,

which are more affordable but challenged by uneven sequencing coverage and exacerbated

sequencing read misalignment, resulting in uncertain predictions for (1) RHD zygosity and

hybrid alleles, (2) RHCE*C vs. RHCE*c alleles, (3) RHD c.1136C>T zygosity, and (4) RHCE

c.48G>C zygosity. We optimized RHtyper to accurately predict RHD and RHCE genotypes

using WES data by leveraging machine learning models and improved the concordance of

WES with WGS predictions from 90.8% to 97.2% for RHD and 96.3% to 98.2% for RHCE

among 396 patients in the Sickle Cell Clinical Research and Intervention Program. In a second

validation cohort of 3030 cancer survivors (15.2% Black or African Americans) from the St.

Jude Lifetime Cohort Study, the optimized RHtyper reached concordance rates between WES

andWGS predications to 96.3% for RHD and 94.6% for RHCE. Machine learning improved the

accuracy of RH predication using WES data. RHtyper has the potential, once implemented, to

provide a precision medicine-based approach to facilitate RH genotype–matched transfusion

and improve transfusion safety for patients with SCD. This study used data from clinical trials

registered at ClinicalTrials.gov as #NCT02098863 and NCT00760656.
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Introduction

Blood transfusion is an essential treatment for chronic anemia disorders, including sickle cell disease
(SCD) and thalassemia. Exposure to donor red blood cell (RBC) antigens can lead to alloimmunization
and increase the risk of hemolytic transfusion reactions with subsequent transfusions.1 Prophylactic
matching for Rh (C, E or C/c, E/e) and K antigens lowers the risk of alloimmunization in patients with
February 2024; prepublished online on
arch 2024. https://doi.org/10.1182/

g data are available at St. Jude Cloud
or the 396 patients with sickle cell dis-
and Intervention Program study (acces-
cancer survivors from St. Jude Lifetime
-1002).18 The RH genotypes of the

patients are included in supplemental Tables 3 and 4. The source code and tutorial of
RHtyper can be accessed via GitHub (https://github.com/disonchang/RHtyper).

The full-text version of this article contains a data supplement.
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SCD and thalassemia but alloantibody formation against the Rh
blood group remains a challenge because of the genetically diverse
RH genes of Black patients and blood donors.2,3 The Rh blood
group consists of 5 major antigens, D, C, c, E, and e, and is
encoded by the highly homologous RHD and RHCE genes.4 RHD
and RHCE genes of individuals of African descent exhibit high
diversity with single nucleotide polymorphisms (SNPs), insertions/
deletions (indels), and structural variants. Approximately 450 RHD
and 190 RHCE alleles have been identified, and >50 Rh variant
antigens have been described serologically. We found in our
practice that 48% to 49% of patients with SCD and 41% of Black
blood donors in the United States have an RHD or RHCE variant
(excluding altered alleles of RHD*10.00 or RHD*DAU0 and
RHCE*01.01 or RHCE*ce48C),5,6 and 7% of D-positive patients
with SCD have a partial D.7 In Brazil, 15% of patients with SCD
and 8% of African Brazilian blood donors have both variant RHD
and RHCE alleles.8 These variant RH alleles encode proteins
associated with the loss of epitopes or the expression of neo-
epitopes. Individuals with variant RH alleles are at risk of alloim-
munization when exposed to conventional or variant Rh antigens
differing from their own. Because serological antigen typing cannot
distinguish the presence of most variant Rh antigens,2 RH geno-
typing and consideration of RH genotype matching can potentially
improve the resource allocation of valuable Black blood donors and
avoid Rh alloimmunization.

Next-generation sequencing (NGS) data, such as whole-genome
sequencing (WGS) and whole-exome sequencing (WES), offer
comprehensive evaluation of the genome and have been used for
RH genotyping.9-13 Genotyping RH using NGS data is challenging
because RHD and RHCE are duplicated genes that share 97%
sequence identity. Sequencing reads from highly homologous
regions may map ambiguously, making it difficult to determine the
true genomic origin of these reads. Therefore, analysis of NGS data
from RH loci requires sophisticated bioinformatics tools that can
differentiate between true genetic variants and sequencing arti-
facts. We previously developed RHtyper for automated and
accurate detection of the complex RH genotypes of Black or
African American individuals using WGS data.6 RHtyper relies on a
Bayesian likelihood-based framework to infer RH genotypes
directly after short-read sequence alignment. Both sequence
consistency at each SNP/indel and phase consistency across
adjacent SNPs/indels are considered to improve prediction accu-
racy. RHtyper also incorporates coverage profiling to determine
RHD zygosity and hybrid alleles and can further define potential
breakpoints of the hybrid RH alleles using the Circular Binary
Segmentation algorithm. In a validation cohort of 57 patients with
SCD, RHtyper achieved 100% accuracy for RHD and 98.2%
accuracy for RHCE when compared with RH genotypes verified by
multiple molecular methods. Upon application to the Sickle Cell
Clinical Research and Intervention Program (SCCRIP) study
cohort, RHtyper achieved high concordance rates of 98.3% with C
serological typing (n = 360 patients) and 99.54% with D sero-
logical typing (n = 219 patients).

WES is a focused and cost-effective strategy to identify exonic
variations but has limitations we sought to overcome with machine
learning. Sequencing coverage of WES is uneven because of
variable sequencing read enrichment by capturing oligonucleotides
at different locations, leading to inaccurate prediction for copy
numbers of exons and SNPs. WES data lacks most intronic
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sequence markers essential for aligning sequencing reads, result-
ing in misalignments among highly homologous exons. Here, we
adapted RHtyper for WES data by leveraging machine learning to
address uneven coverage and sequence misalignments and
improved WES-based RH genotyping substantially.

Methods

Patients

Existing WES and WGS data from 396 patients with SCD
enrolled in the SCCRIP study and 3030 cancer survivors enrolled
in St. Jude Lifetime Cohort Study (SJLIFE) at St. Jude Children’s
Research Hospital (SJCRH) were included in this study. Of the
396 patients with SCD, 56 had RH genotypes tested by the
standard RH genotyping method, SNP-based and targeted
molecular assays, and confirmed by Sanger sequencing and NGS
as previously described6 and in supplemental Methods. They
were used to further verify the WES-predicted genotypes. The
SCCRIP is a lifetime longitudinal cohort study of patients with
SCD, in which clinical information is prospectively collected and
biologic samples are banked, including blood for genomics and
proteomics studies (NCT02098863).14 The SJLIFE is a retro-
spective cohort study with prospective follow-up and ongoing
accrual of oncology patients treated at SJCRH who were aged
≥18 years and ≥10 years after diagnosis from their malignancy
(NCT00760656).15

WES, WGS, and serological typing

Genomic DNA was extracted from peripheral blood mononuclear
cells using standard methods, and WGS and WES were per-
formed at the HudsonAlpha Institute for Biotechnology and the
SJCRH Hartwell Center for Bioinformatics and Biotechnology, as
previously described.14,16 The paired-end reads were aligned
against the human genome (hg38) using the Burrows-Wheeler
Aligner software package.17 For patients in the SJLIFE cohort,
serological typing of RhD only was performed.

Adjustment of RHtyper for WES data

The RH allele database was curated from the International Society
of Blood Transfusion database and the now-retired National Center
for Biotechnology Information-Blood Group Antigen Gene Muta-
tion (BGMUT) database, as previously described.6 The consoli-
dated database included 419 RHD and 130 RHCE alleles
annotated for genotype determination. Variants were determined
according to conventional RH messenger RNA sequences (RHD,
L08429; RHCE, DQ322275), which differ from the reference
genomic sequence (hg38) by 2 SNPs in the coding region (con-
ventional RHD sequence, c.1136T, reference genomic sequence,
c.1136C; conventional RHCE sequence, c.48G, reference
genomic sequence, c.48C).

The WES-based RHtyper algorithm was developed according to
the WGS-based RH genotyping approach6 with modification for
WES data and by adding machine learning models to improve the
prediction accuracy (Figure 1). Specifically, the WES-based
RHtyper algorithm consists of 4 main steps: (1) variant profiling
for SNPs/indels and coverage alterations; (2) predicting RHD
zygosity and hybrid alleles, RHD c.1136C>T and RHCE c.48G>C,
and the presence of RHCE*C or RHCE*c alleles using established
machine learning models; (3) refining the hybrid allele and hybrid
11 JUNE 2024 • VOLUME 8, NUMBER 11
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Figure 1. Modification of RHtyper for WES data by

adding machine learning. The WES-based RHtyper

algorithm consists of 4 main steps: (1) variant profiling of

SNPs/indels and coverage alterations. (2) Predicting RHD

zygosity and hybrid alleles, RHCE*C and RHCE*c, and the

zygosity of RHD c.1136C>T and RHCE c.48G>C using

machine learning models. (3) Refining hybrid allele and
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likelihoods to rank candidate allele pairs. Finally, the

candidate allele pair with the highest likelihood scores is

considered as the predicted genotype. BAM, binary
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breakpoint predictions using segmentation; and (4) generating
likelihood scores using genotypes and phased haplotype likeli-
hoods to rank candidate allele pairs. Finally, the candidate allele
pair with the highest likelihood score was reported as the predicted
genotype.

RH variant calling and coverage profiling. Variants were
called via the Samtools pileup method17 using WES reads that met
predefined read criteria (base read quality ≥15, mapping read
quality ≥10, and average read quality ≥15). Counts of A, T, G, and
C nucleotides and indels were generated for each exonic position
of RHD/RHCE genes. Exonic positions with variant allele-
frequency >10% were classified as heterozygous sites. SNPs
and indels were annotated subsequently with encoded amino acid
changes. RHD/RHCE coverage profiling was performed as previ-
ously described, using WES data.6

Construction of machining learning models. The WGS-
predicted genotypes served as control references.6 Informative
features were selected using the Boruta algorithm (10.18637/
jss.v036.i11), based on per-base coverage and variant allele fre-
quency. The selected features were then incorporated to construct
XGBoost models for model learning, using 75% of the WES data
from the SCCRIP study. The modified RHtyper was next validated
using the remaining 25% of the data from the SCCRIP study as
well as a second patient cohort, SJLIFE.
11 JUNE 2024 • VOLUME 8, NUMBER 11
This study was approved by the SJCRH institutional review board,
and all participants or guardians provided written informed consent.

Results

Uneven sequencing coverage of WES data

The average RH sequencing coverage for 396 patients with SCD
in the SCCRIP cohort was 56.3× for WES compared with 35.7×
for WGS. WES coverage demonstrated high regional unevenness,
the normalized coverage per RHD exon ranged from –6.09 ± 5.09
to 0.21 ± 1.60 (mean ± standard deviation, “0” representing 2
copies), and the normalized coverage per RHCE exon ranged from
–0.80 ± 0.78 to 1.01 ± 0.35 (Figure 2; supplemental Table 1). In
contrast, the normalized WGS coverage fluctuated less, ranging
from –3.58 ± 3.50 to –0.40 ± 0.85 per RHD exon, and from
–0.70 ± 0.33 to 0.35 ± 0.41 per RHCE exon. Notably, RHD
coverage varied more than RHCE regardless of sequencing
method because RHD and RHCE have identical exon 8, and most
sequencing reads from exon 8 align to RHCE, reducing RHD exon
8 coverage markedly. The unevenness of the WES coverage of RH
genes affected the prediction of zygosity of alleles and SNPs.

Limitation of RHtyper using WES data

Because RHtyper was initially designed for WGS data analysis, we
first modified the algorithm for WES data to not rely on intronic
markers for identification. RHCE*C can be predicted using WGS
GENOTYPING RH GENES BY RHtyper USING WES DATA 2653
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Figure 2. Uneven sequencing coverage of RH genes by WES compared with WGS. Sequencing coverage is normalized by log2 transformation of the ratio between each
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data with high confidence using a 109-base pair insertion in the
RHCE*C intron 2. Because this intronic region is not covered by
WES, RHCE*C was instead identified by increased coverage of
RHD exon 2, because RHCE*C and RHD exon 2 are identical, and
the reads from RHCE*C typically align with RHD.9 Notably, WES
data cannot be used to identify alleles with only intronic variations.

We next determined RH genotypes using WES data for 396
patients with SCD from the SCCRIP cohort, all of whom were
Black or African American. The concordance rates between WES
and previously reported WGS predictions6 were 90.3% (715/792
alleles) for RHD and 96.3% (763/792 alleles) for RHCE
(Figure 3A). Problematic determinations included (1) RHD zygosity
and hybrid alleles, (2) RHCE*C vs RHCE*c alleles, (3) RHD
c.1136C>T zygosity, and (4) RHCE c.48G>C zygosity. RHD
zygosity, hybrid alleles, and RHCE*C were predicted based on
sequencing coverage of the whole gene (ie, RHD zygosity) or
certain exons of the gene (ie, RHCE exon 4 to 7 for RHD*03N.01
or RHD*DIIIa-CEVS(4-7)-D, RHD exon 2 for RHCE*C), which
was less accurate with WES data due to the fluctuated
sequencing coverage. RHD c.1136C>T (p. Thr379Met), located in
exon 8, is the most common missense RHD SNP in patients with
SCD and is the characteristic SNP that defines the RHD DAU
cluster.6,19 Because the reference genomic sequence of RHD
represents RHD*10.00 or RHD*DAU0 with c.1136T, and the
conventional RHD shares exon 8 with RHCE with c.1136C, almost
all sequence reads from conventional RHD align with RHCE,
resulting in reduced coverage of RHD exon 8. To circumvent the
skewed coverage of exon 8, RHD c.1136 C>T zygosity was
determined for the WGS data by dividing the reads containing the
SNP by genome-wide average read coverage rather than position-
specific read coverage. However, this approach was no longer
reliable with WES data, given the highly variable exome-wide
sequencing coverage. RHCE c.48G>C (p. Trp16Cys) resides in
exon 1 and is the most common missense RHCE SNP found in
patients with SCD.6 In addition, RHCE*01.01 or RHCE*ce48C is
as common as the conventional RHCE*01 or RHCE*ce allele in
2654 CHANG et al
Black individuls.5,6 The sequences of conventional RHD and
RHCE exon 1 are highly homologous, differing only by 1 nucleo-
tide: c.48C for RHD and c.48G for RHCE. Without the paired-
mate sequencing reads that cover the surrounding introns to
differentiate RHD from RHCE, sequence reads with RHCE
c.48G>C frequently misaligned to RHD, resulting in an erroneous
G/C fraction and subsequent incorrect allele prediction.

Modification and validation of RHtyper for WES data

Given the low concordance between WES and WGS predictions,
we sought to improve RHtyper by incorporating machine learning
specific to the problematic alleles and SNPs. The SCCRIP cohort
was used for training and validating the machine learning models
because (1) all patients in the SCCRIP cohort were of African
descent with highly diverse RHD and RHCE genes6 and (2)
despite Rh phenotype–matched blood transfusion, patients with
SCD are still at high risk for Rh alloimmunization because of the
genetic diversity of RH genes and will likely benefit the most from
receiving RH genotype–matched blood transfusion.2,5,20 A total of
1547 informative features for RHD zygosity and hybrid alleles, 255
for RHCE*C vs RHCE*c allele differentiation, 240 for RHD
c.1136C>T, and 253 for RHCE c.48G>C zygosity, were selected
to build machine learning models (supplemental Figure 1). The RH
genotypes predicted using the WGS data were used as reference
genotypes because of their high accuracy.6 We randomly selected
75% of the WES data from the SCCRIP cohort for model training,
and the remaining 25% for validation. Machine learning improved
the concordance rates between WES and WGS predictions to
98.0% for RHD zygosity and hybrid alleles, 97.0% for RHCE*C vs.
RHCE*c alleles, 97.0% for RHCE c.48G>C zygosity, and 96.0%
for RHD c.1136C>T zygosity. The overall concordance rates for
the SCCRIP cohort were 97.2% (770/792 alleles) for RHD and
98.2% (778/792 alleles) for RHCE (Figure 3B; supplemental
Tables 2-3). The remaining discrepancies were due to, with sub-
stantially fewer numbers though, RHD zygosity and hybrid alleles (6
alleles 0.8% of total 792 RHD alleles), RHCE*C vs RHCE*c (8
11 JUNE 2024 • VOLUME 8, NUMBER 11
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alleles, 1% of total 792 RHCE alleles; 6 RHCE*C misidentified as
RHCE*c, 0.8% of total RHCE alleles; 2 RHCE*c as RHCE*C,
0.2% of total RHCE alleles), RHCE c.48G>C zygosity (5 alleles,
0.6%), RHD c.1136C>T zygosity (9 alleles, 1.1%), and other SNP
discrepancies (RHD, 7 alleles, 0.9%; RHCE, 1 allele, 0.1%).

In the SCCRIP cohort, the RH genotypes of 56 patients were also
determined by standard RH genotyping methods of RH SNP array
and targeted molecular assays, verified by Sanger sequencing or a
second independent NGS as described previously6 and in
11 JUNE 2024 • VOLUME 8, NUMBER 11
supplemental Methods. Compared with the known genotypes, the
modified RHtyper using WES data achieved 98.2% (110/112
alleles) accuracy for RHD and 94.6% (106/112 alleles) accuracy
for RHCE alleles (Table 1). Notably, none of the erroneous pre-
dictions would have led to an increased risk of Rh alloimmunization.
One erroneous prediction in which patient 1, with “RhC”
(RHCE*02/RHCE*01.20.01 or RHCE*Ce/RHCE*ce733G), was
misidentified by WES as “Rhc” (RHCE*01/ RHCE*01.20.02 or
RHCE*ce/RHCE*48C733G) could have resulted in the dispen-
sation of C-negative blood to a C-positive patient unnecessarily.
GENOTYPING RH GENES BY RHtyper USING WES DATA 2655



Table 1. Discrepancies between known and WES-predicted genotypes in 56 patients with SCD

Patient

RH
allele Known genotypes† WES-predicted genotypes Confirmation methods

1 D RHD*01 Same ⎼

D Deletion Same ⎼

CE RHCE*02 (RHCE*Ce) RHCE*01 (RHCE*ce) Serology

CE RHCE*01.20.01 (RHCE*ce733G) RHCE*01.20.02 (RHCE*ce 48C, 733G) Serology

2 D RHD RHD*10.00 (RHD*DAU0) Sanger sequencing

D RHD RHD*10.00 or (RHD*DAU0) Sanger sequencing

CE RHCE*02 or RHCE*Ce Same ⎼

CE RHCE*01.20.01 (RHCE*ce733G) RHCE*01.20.02 (RHCE*ce 48C, 733G) Sanger sequencing

3 D RHD*01 Same ⎼

D Deletion Same ⎼

CE RHCE*01 (RHCE*ce) An extra RHCE c.105C>T identified Sanger sequencing

CE RHCE*01.20.02 (RHCE*ce 48C, 733G) Sanger sequencing

4 D RHD*01 Same ⎼

D Deletion Same ⎼

CE RHCE*01 (RHCE*ce) Same ⎼

CE RHCE*01 (RHCE*ce) RHCE*01.01 (RHCE*ce48C) Sanger sequencing

†Determined by standard RH genotyping methods of RH SNP array and targeted molecular assays, verified by Sanger sequencing or a second independent NGS or serology.
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Further validation of the modified RHtyper in the

SJLIFE cohort

Next, we validated the modified RHtyper in a second available
patient cohort, SJLIFE, consisting of 3030 cancer survivors.
Among 2716 patients with racial information, 84.6% (2298) were
White, 15.2% (413) Black or African American, 0.11% (3) Asian,
0.04% (1) American Indian or Alaska Native, and 0.04% (1) Native
Hawaiian or Other Pacific Islander. The concordance rates
between WES and WGS predictions were 96.3% (5837/6060
alleles) for RHD and 94.6% (5734/6060 alleles) for RHCE
(Figure 4; supplemental Tables 2 and 4). Discrepancies included
RHD zygosity and hybrid alleles (159 alleles, 2.6% of 6060 RHD
alleles), RHCE*C vs RHCE*c differentiation (263 alleles, 4.3% of
total 6060 RHCE alleles; 237 RHCE*C misidentified as RHCE*c,
3.9% of total RHCE alleles; 26 RHCE*c as RHCE*C, 0.4% of total
RHCE alleles), RHCE c.48G>C zygosity (37 alleles, 0.6%), RHD
c.1136C>T zygosity (17 alleles, 0.3%), and SNPs and other dis-
crepancies (RHD, 47 alleles, 0.8%; and RHCE, 26 alleles, 0.4%).
For 1036 patients with blood type information, the predicted RhD
serological types using WES data were 99.8% (1034/1036
patients), consistent with the clinical serology results; notably, this
comparison only assessed whether the modified RHtyper could
correctly predict the presence or absence of RhD. The predicted
frequency of C antigen was 65.23% (1499/2298 patients) per
WGS and 58.96% (1355/2298 patients) per WES for White
patients, and 23.24% (96/413 patients) per WGS and 24.21%
(100/413 patients) per WES for Black or African American
patients, consistent with the known racial distribution (68% of
White people and 27% of Black people).21

The modified WES-based RHtyper was trained primarily using data
from Black or African American patients, whereas most patients in
the SJLIFE cohort were White, for whom the frequency of RH
2656 CHANG et al
variation is ~1% to 2%.21 Therefore, we compared the concor-
dance rates of White vs Black or African American patients in the
SJLIFE cohort (Figure 5). Discrepancies were significantly higher
among White patients for RHD zygosity and hybrid alleles (127
alleles or 2.8% of RHD alleles in White patients vs 11 alleles or
1.3% of RHD alleles in Black or African American patients; P =
.0157), and RHCE*C vs RHCE*c differentiation (227 alleles or
5.0% of RHCE alleles in White patients vs 8 alleles or 1.0% of
RHCE alleles in Black or African American patients; P < .0001). In
contrast, the discrepancy in RHD c.1136C>T zygosity was
significantly higher in Black or African American patients (10 alleles
or 1.2% of RHD alleles in Black or African American patients vs 1
allele or 0.02% of RHD alleles in White patients; P < .0001),
although the overall number of discrepant alleles was very low.

Discussion

The WGS-based RHtyper relies on sequencing coverage profiles
to predict the zygosity of alleles and SNPs.6 This approach alone
was less accurate for analyzing WES data because of uneven
sequencing coverage and misalignment of sequencing reads. To
improve the prediction accuracy using WES data, we optimized
RHtyper by leveraging machine learning to target the 4 most
affected SNPs and alleles: (1) RHD zygosity and hybrid alleles, (2)
RHCE*C vs RHCE*c alleles, (3) RHD c.1136C>T zygosity, and
(4) RHCE c.48G>C zygosity. Machine learning substantially
increased the concordance of WES– with WGS–predicted RH
genotypes when applied to 2 independent large patient cohorts,
SCCRIP and SJLIFE, but a few limitations remained.

Manual or automated genotyping of RHD and RHCE from targeted
exome sequencing and WES data has been performed by
multiple groups.9,10,22-25 Prediction of RHD zygosity and hybrids
and RHCE*C vs RHCE*c alleles by sequencing coverage have
11 JUNE 2024 • VOLUME 8, NUMBER 11
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consistently been difficult with WES data. Schoeman et al reported
that the sensitivity to detect a deletion in RHD and RHCE was
89.8%, and only 52.8% for duplications using sequencing
coverage alone (n = 28).25 To overcome this limitation, Chou et al
and Lane et al determined RHD zygosity using RHCE as a control,
because nearly all individuals have 2 copies of RHCE, and
RHCE*C identification was based on decreased read coverage of
RHCE exon 2 compared with RHCE exons 1 and 3.9,13 Chou et al
reported that the approaches improved the concordance rate to
98% (n = 54).9 Lane et al developed the first automated algorithm
for RBC antigen genotyping using WES data.13 Using copy
number correction factors calculated from 20 individuals with
known RHD zygosity and C/c antigen status to normalize the
sequencing coverage of each exon, the authors were able to
correctly genotype the remaining 55 individuals. The improvement
strategies used by these studies involved creating predetermined
rules based on data from a small cohort of individuals. However,
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this approach may not be comprehensive enough to capture all the
necessary information for accurate prediction in a large number of
individuals. WES data were also not reliable in predicting RHCE
c.48G>C and RHD c.1136C>T owing to the misalignment of
sequencing reads.9,25 The algorithm created by Lane et al was able
to detect RHD c.1136C>T but could not distinguish homozygous
from heterozygous ones.13

We optimized RHtyper for WES data using machine learning. The
learning process allows the incorporation of diverse informative
features and has been applied to complicated and high-
dimensional data, including genomic sequencing data. It enables
accurate predictions based on automated data learning rather than
simple rule-based classification. In our study, informative features of
per-base coverage and variant allele frequency from hundreds to
thousands of exonic positions were used to identify the problematic
SNPs and alleles. Training with almost 300 patients with SCD from
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the SCCRIP cohort allowed for the recognition of intricate patterns
for accurate prediction. Machine learning markedly improved the
concordance rates between WES and WGS predictions to 97.2%
for RHD and 98.2% for RHCE in the SCCRIP cohort (n = 396)
and 96.3% for RHD and 94.6% for RHCE in the SJLIFE cohort
(n = 3030). Using similar machine learning approaches, RHtyper
can be extended to analyze other blood group proteins encoded by
highly homologous genes, for example, the MNS blood group.

Discordant predictions between WES and WGS remained despite
machine learning. RHD zygosity and hybrid alleles, and RHCE*C vs
RHCE*c alleles contributed to most discrepancies. Discordant RHD
zygosity and hybrid allele calling occurred more often in patients with
hemizygous RHD deletion or heterozygous RHD hybrid alleles, which
require sufficient and even coverage for accurate identification and
could remain challenging for certain patients even with machine
learning. Because the sequencing coverage of RHD exon 2 is critical
in differentiating RHCE*C from RHCE*c alleles, we initially sus-
pected that the coverage might be erroneous owing to misalignment
mediated by SNPs unique to certain patients. However, a compari-
son of RHD exon 2 and its surrounding intron sequences (50 bp into
the surrounding introns) between patients with and without RHCE*C
vs RHCE*c discrepancy revealed no SNPs that would have led to
misalignment (data not shown). Furthermore, White patients in the
SJLIFE cohort were more likely to have discordant predictions of
RHD zygosity and hybrid alleles and RHCE*C vs RHCE*c alleles
than Black or African American patients. The skewed discordance
could be due to higher frequencies of D-negative and C-positive
status in White (15% and 68%, respectively) than in Black or African
American patients (8% and 27%, respectively).21 Racial differences
between the training and validation cohorts could also provide an
explanation, as all patients in the SCCRIP training cohort were Black
or African American and 84.6% of the patients in the SJLIFE vali-
dation cohort were White. It is possible that individuals from different
races may have slightly different sequencing coverage patterns, or
that the informative features used to identify and/or differentiate those
alleles vary slightly with race, for which future studies are warranted.
Additional training using WES data from White individuals and indi-
viduals of other racial and ethical groups is needed to further improve
the accuracy of RHtyper.

The clinical implementation of RHtyper may become increasingly
relevant as more patients with chronic diseases are being interro-
gated by WES or WGS. It provides an analysis tool for data that
may already exist or be obtained for other clinical care. RH geno-
typing can enhance transfusion safety by facilitating anti-Rh anti-
body identification and/or, in some cases, improve prophylactic
RBC matching strategies. For example, for patients with the hybrid
alleles of RHD*01N.03 or RHD*DIIIa-CEVS (4-7)-D,
RHCE*02.10.01 or RHCE*CeRN, which encode partial C antigen,
and no conventional RHCE*Ce or RHCE*CE allele, transfusion
with C-negative RBCs is recommended to prevent anti-C forma-
tion.26 Genotyping blood donors, particularly frequent Black
donors who support C/E/K-matched RBCs for patients with SCD,
may facilitate RH genotype–matched blood transfusion and
improve transfusion safety in the future. RHtyper achieved high
concordance rates in 2 large validation cohorts after incorporating
the machine learning models but was not 100% accurate. One
limitation is that RHtyper may incorrectly predict RHCE*C and
RHCE*c using WES data. Misidentification of RHCE*C as
RHCE*c may result in C-positive patients receiving C-negative
2658 CHANG et al
blood, which would not cause any harm to the patient, but from a
resource perspective, it would be a poor allocation of C antigen-
negative units. Conversely, the misidentification of RHCE*C as
RHCE*c in blood donors may result in exposing C-negative
recipients to C-positive blood and potential anti-C formation.
Therefore, the use of RHtyper for RH genotyping of blood donors
would need to be combined with other testing such as standard
serologic typing. For clinical application, additional training and
validation using samples from multiple racial groups with RH
genotypes verified by RH SNP array, Sanger sequencing, and
other molecular methods, as well as serological tests, are essential
to further optimize RHtyper prediction.

There are limitations to our study. First, we used WGS-predicted
genotypes by RHtyper as a reference. This seemed justified, as
we previously demonstrated that the WGS-predicted genotypes
were highly accurate compared with genotypes verified by multiple
molecular methods and serological types for D and C/c antigens.6

Second, the SJLIFE cohort was only serologically typed for D
antigen; thus, concordance with C antigen typing was not possible.
However, the prevalence of C antigen in White and Black or Afri-
can American patients derived from WGS and WES data were
consistent with known frequencies, indicating that the genotyping
results were likely accurate.21

In conclusion, we optimized RHtyper for WES data by adding
machine learning to overcome the variable sequencing coverage
and misalignment associated with WES data. The optimization
improved RH genotyping accuracy and extended the application
spectrum of RHtyper to include more widely available WES data.
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