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Key Points

• Chronological age and
sickle cell genotype
were associated with
specific epigenetic age
clocks in individuals
with SCD.

• Later generation
epigenetic age clocks
demonstrate age
acceleration in SCD,
whereas older clocks
do not.
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Sickle cell disease (SCD) affects ~100 000 predominantly African American individuals in the

United States, causing significant cellular damage, increased disease complications, and

premature death. However, the contribution of epigenetic factors to SCD pathophysiology

remains relatively unexplored. DNAmethylation (DNAm), a primary epigenetic mechanism for

regulating gene expression in response to the environment, is an important driver of normal

cellular aging. Several DNAm epigenetic clocks have been developed to serve as a proxy for

cellular aging. We calculated the epigenetic ages of 89 adults with SCD (mean age, 30.64 years;

60.64% female) using 5 published epigenetic clocks: Horvath,Hannum, PhenoAge, GrimAge, and

DunedinPACE. We hypothesized that in chronic disease, such as SCD, individuals would

demonstrate epigenetic age acceleration, but the results differed depending on the clock used.

Recently developed clocks more consistently demonstrated acceleration (GrimAge,

DunedinPACE). Additional demographic and clinical phenotypes were analyzed to explore their

association with epigenetic age estimates. Chronological age was significantly correlated with

epigenetic age in all clocks (Horvath, r = 0.88; Hannum, r = 0.89; PhenoAge, r = 0.85; GrimAge, r =

0.88; DunedinPACE, r = 0.34). The SCD genotype was associated with 2 clocks (PhenoAge, P = .02;

DunedinPACE, P < .001). Genetic ancestry, biological sex, β-globin haplotypes, BCL11A

rs11886868, and SCD severity were not associated. These findings, among the first to interrogate

epigenetic aging in adults with SCD, demonstrate epigenetic age acceleration with recently

developed epigenetic clocks but not older-generation clocks. Further development of epigenetic

clocks may improve their predictive ability and utility for chronic diseases such as SCD.

Introduction

Sickle cell disease (SCD) is a progressive and complex chronic disease characterized by abnormally
shaped red blood cells that adhere to blood vessel walls, ultimately resulting in vaso-occlusion of the
microcirculation, subsequent ischemia, and organ damage.1 The complex pathophysiology of SCD
includes elements of inflammation and adhesion that contribute to significant cellular damage over
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time,2 increased disease complications, and ultimately premature
death (median age = 43 years).3 Previous reviews have highlighted
the mechanisms of SCD pathophysiology through associations
with genetic loci.4,5 However, the contribution of epigenetic factors
to SCD pathophysiology is relatively unexplored despite the pres-
ence of age-related disparities in SCD, such as advanced clinical
presentation and early mortality.6 The mean survival for individuals
with SCD remains lower than that of individuals without SCD.7,8

These observed disparities, in combination with exposure to envi-
ronmental stressors and the multisystem pathophysiologic
involvement of SCD, suggest that accelerated epigenetic aging
processes occur in this population. In particular, aging and early
mortality in people with SCD may be informed by measuring
epigenetic alterations.

One of the key hallmarks of normal biological aging is epigenetic
alteration.9 DNA methylation (DNAm), a primary epigenetic mech-
anism for regulating gene expression,10 is an important driver of
cellular aging.9,11 Epigenetic aging is determined by assessing the
levels of DNAm at genome-wide Cytosine-phosphate-Guanine
(CpG) loci.10 Using these CpG loci, several epigenetic clocks have
been developed to calculate epigenetic age, including the Hor-
vath,10 Hannum,12 PhenoAge,13 GrimAge,14 and DunedinPACE15

clocks. These clocks generate estimates of “epigenetic” age given
a sample’s methylation profile. Epigenetic age acceleration or
deceleration can then be estimated from the difference between the
epigenetically predicted age and the chronological age (determined
by the date of birth). Accelerated aging is associated with poor
health outcomes and is a strong predictor of mortality.16-18 Puta-
tively, this is a result of the accumulation of cellular damage and
environmental exposure (eg, living conditions and chronic stress)
that alter DNAm and accelerate the pace of cellular aging, ultimately
causing molecular changes (eg, immune activation and inflammation,
oxidative stress, and mitochondrial dysfunction).13,19,20 Global
measures of epigenetic age and epigenetic age acceleration, rather
than methylation at a single locus, provide a more comprehensive
view of DNAm patterns, which are critical when investigating com-
plex symptoms in complex conditions such as SCD.

Each epigenetic clock has been developed for different purposes
and outcomes. The “first-generation” clocks, Horvath and Hannum,
estimate chronological age.10,12 The “second-generation” clocks,
PhenoAge and GrimAge, estimate composite measures that
incorporate biomarkers alongside chronological age.13,14 Notably,
GrimAge incorporates cystatin-C, which is associated with SCD
nephropathy and early mortality.21 The “third-generation” clock,
DunedinPACE, uses longitudinal methylation data to produce an
age-adjusted rate of aging as opposed to epigenetic age.15 These
clocks assess methylation at disparate age-specific CpG loci, likely
capturing different components of aging.18,22

Overall, the baseline for the evaluation of epigenetic age acceler-
ation is healthy and nonage-accelerated individuals. These clocks
are calibrated using methylation data from healthy individuals
without chronic disease. Analyses of epigenetic aging in non-
healthy individuals have been performed in other disease contexts,
yielding accelerated epigenetic age estimates.16 These observa-
tions underpin our hypothesis that individuals with SCD would
demonstrate age acceleration. Although SCD is an age-dependent
chronic disease, its effects on global methylation patterns remain
unknown, motivating this exploratory analysis of an SCD cohort.
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Importantly, the cohorts used to develop these clocks did not
match the genetic and ancestral backgrounds of the SCD cohorts.
Of the 82 cohorts used in the Horvath clock, only 2 contained
individuals of African ancestry.10 The Hannum clock used a mixed
Caucasian and Hispanic cohort,12 PhenoAge used an Italian
population,13 GrimAge used the Framingham Heart Study (majority
European descent),14 and DunedinPACE used the Dunedin study
(European descent).15 Moreover, genetic ancestry is known to be
associated with epigenetic age estimates.23 This highlights the
need to assess individuals that closely match the epigenetic
background of people with SCD. A few studies have characterized
methylation data in African Americans, but such studies are rare
compared with those in European populations.24

To assess epigenetic aging in individuals with SCD, we calculated
the epigenetic ages of an adult cohort of individuals with SCD
(from the Sickle Cell Disease Implementation Consortium;
SCDIC)25 across 5 epigenetic clocks: Horvath,10 Hannum,12

PhenoAge,13 GrimAge,14 and DunedinPACE.15 We examined (1)
the correlations between epigenetic age and reported chronolog-
ical age to identify instances of accelerated epigenetic aging, (2)
epigenetic age acceleration or deceleration beyond chronological
age contributions, and (3) the effects of various demographic and
clinical characteristics on epigenetic age. We also compared CpG
probes used in the 5 clocks. In this study, we present the results of
one of the first exploratory assessments of epigenetic aging in adult
individuals with SCD and lay the groundwork for interpreting
epigenetic age estimates in SCD cohorts of African ancestry.

Methods

Design and participants

Data included in this cross-sectional, epigenetic study were
obtained from the SCDIC Research Registry at Duke University
(5U01HL133964). The SCDIC was a multisite program that con-
sisted of a coordinating center and 8 clinical centers, including
Duke University. One of the goals of this consortium was to
develop and maintain a comprehensive research registry that
included patient-reported outcomes and clinical data collected
through participant self-reports or obtained through medical
records.25,26 At Duke, blood specimens were obtained from a
subset of participants and banked for future analyses.

The inclusion criteria for the Duke SCDIC Research Registry
included individuals who were 15 years or older, lived in North
Carolina, had laboratory documentation of a genetically confirmed
SCD diagnosis (confirmed in the electronic health record or a
genetic laboratory report obtained from a health care provider),
were literate in English, and completed informed consent proced-
ures. Additional inclusion criteria for this study included individuals
who consented to and provided a blood sample. A total of 91
participants met the inclusion criteria for this study. The study was
approved by the Duke University Institutional Review Board.

Sociodemographic and clinical data

Self-reported sociodemographic data collected through the regis-
try included chronological age, biological sex, race, ethnicity,
marital status, and the highest level of education completed. SCD
genotype (SS/sickle cell anemia, SC disease, S β0 thalassemia,
and S β+ thalassemia) data were collected from medical records.
9 JANUARY 2024 • VOLUME 8, NUMBER 1



D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/8/1/47/2180480/blooda_adv-2023-011188-m

ain.pdf by guest on 20 M
ay 2024
SCD disease severity was collected using the Adult Sickle Cell
Quality of Life Measurement (ASCQ-Me) SCD Medical History
Checklist, a 9-item survey that captures common treatments and
complications associated with the disease, including avascular
necrosis, lung damage, leg ulcers, stroke, spleen damage, kidney
disease, retinopathy, regular blood transfusions, and daily pain medi-
cation use.27 Each “yes” response (indicating the presence of treat-
ment or complication) was tallied, and the total score was calculated.
Higher scores (0-9 range) indicate greater disease severity.

TOPMed sequence data generation

Whole genome sequencing (WGS) data from 91 participants of
the Duke SCDIC Research Registry were generated using the
National Heart, Lung, and Blood Institute TOPMed program as part
of its Freeze 11 release.28 Information on the latest published
sequencing, variant calling, and quality control methodology can be
found on the TOPMed website (https://topmed.nhlbi.nih.gov/
topmed-whole-genome-sequencing-methods-freeze-9).

Methylation data processing

DNA was previously extracted from 96 blood samples from the
Duke SCDIC cohort, representing 91 unique subjects. From these
DNA samples, DNAm data were generated in the Duke Molecular
Physiology Institute Core laboratory using the Infinium Methyl-
ationEPIC Beadchip (Illumina, San Diego, CA). A total of 250 ng of
DNA was plated in 96-well plates and bisulfite treated using the EZ
DNA Methylation-Direct™ Kit (Zymo). Five samples were repeated
for use in assessing replicability of the experiment. Genome-wide
DNA methylation was measured on a beadchip from bisulfite-
converted DNA samples. These data were preprocessed using
Illumina GenomeStudio software. Sample and probe quality control
(QC) was performed using the minfi29 and ChAMP30 R packages.
The relative levels of methylation (β) were calculated as the ratio of
the methylated probe signal to total locus signal intensity. Probe
QC and data normalization were performed within each batch
using R package wateRmelon.31 Probes that were not detected
(detection P value > .0001) in >10% of the samples and those
hybridizing to multiple locations in the genome (cross-reactive)
were removed.32-34 Raw β values were normalized using the dasen
approach,31 and adjustments for both chip and chip positions were
accomplished using ComBat35 in the R package sva.36

Five individuals each had 2 technical replicates, which were
correlated with each other. One replicate for each sample was
randomly chosen for inclusion in statistical analysis (5 replicates
were excluded). One additional sample was excluded based on the
presence of a sex mismatch between the reported sex and the
DNAm-predicted sex. DNAm-predicted sex was generated using
the R package minfi, which estimates the X and Y chromosome
copy numbers from total methylation signals.29 No other samples
were excluded based on the remaining QC metrics: average fluo-
rescence signal intensity below 2000 arbitrary units, <50% of the
mean intensity of all samples, or >10% of probes were not
detectable (detection P value >.0001). Ninety samples were
included in subsequent statistical analyses.

Statistical analysis

Epigenetic age calculations for the Horvath, Hannum, PhenoAge, and
GrimAge clocks were performed using the DNA Methylation Age
Calculator.10,37 Methylation data containing β-values for CpG probe
9 JANUARY 2024 • VOLUME 8, NUMBER 1
identifiers and phenotype data containing tissue type (blood), reported
chronological age, and reported sex were uploaded to the calculator.
Three values were obtained from the calculator: epigenetic age esti-
mates, age acceleration (chronological age subtracted from epige-
netic age), and epigenetic age residuals (residuals from regressing
epigenetic age on chronological age). DunedinPACE rates were
calculated with the β values for CpG probe identifiers using the R
package DunedinPACE.15 Epigenetic age residuals were not relevant
for DunedinPACE because these values were standardized to 1 and
controlled for chronological age. Upon assessment of epigenetic age
values, 1 sample was a distinct outlier in multiple clocks relative to the
other samples and was excluded from further analysis, leaving 89
samples for subsequent analysis.

Genetic ancestry estimates were calculated using the program
ADMIXTURE.38 The WGS data for each of the 91 samples were
obtained using the NHLBI TOPMed program. These data were
filtered for biallelic single nucleotide polymorphisms (SNPs) with ≥
1% minor allele frequency and pruned for variants under linkage
disequilibrium using the PLINK program (window size 50, step size
10, pairwise r2 threshold 0.1 [–indep-pairwise 50 10 0.1]).39 The
remaining variants were run using ADMIXTURE to calculate the
estimated percentages of ancestry. Two ancestral populations were
assumed, corresponding to the African and European components.
The larger “P1” estimate (presumably African) was used as the
“genetic ancestry” value in this study.

Associations between epigenetic age and various demographical
and clinical phenotypes were calculated in R. Welch t tests were
performed on biological sex and SCD genotype. The biological sex
was treated as a dichotomous categorical phenotype. SCD
genotype was dichotomized into “severe” (SS and SB0thalasse-
mia) and “less severe” (SC and SB+thalassemia) categories based
on prior assessments of SCD severity based on genotype.8 SCD
severity (measured with the ASCQ-Me checklist) was treated as a
polytomous ordinal phenotype (4 categories, scores of 0 through
3); epigenetic age and age residuals were regressed on this
phenotype using linear models. Associations between chronolog-
ical age and the proportion of African genetic ancestry were
calculated using the Pearson correlation coefficient.

Two known modifiers of SCD progression, BCL11A polymorphism
and β-globin SCD haplotypes, were also generated. Both modifiers
were obtained from the TOPMed sequencing data, as described
above. Genotypes for the BCL11A polymorphism rs11886868,
known to be associated with fetal hemoglobin levels,40 were
transformed into an ordinal “dosage” metric, counting the number
of alternate alleles “T” present. Epigenetic age and age residuals
were regressed on this metric using linear models. β-globin hap-
lotypes were generated for the individuals in this study using a
previously described method.41 Genome sequences for chromo-
some 11 (the location of the β-globin locus) were phased using the
program SHAPEIT542 and run through the haplotype classifier
script,41 generating β-globin haplotypes. This script was edited to
update the genomic coordinates to the GRCh38 format used by
the TOPMed sequence data, convert the script to Python version
3, and fix the issues by parsing the input. The haplotypes were
dichotomized into 2 groups, 1 for homozygous Benin calls and the
other for all other calls, owing to the high frequency of the Benin
haplotype in SCDIC. Associations with this phenotype were
calculated using Welch t tests.
EPIGENETIC AGING IN SCD 49
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Results

Table 1 provides a summary of the sociodemographic and clinical
characteristics of the 89 individuals included in this study. Most
were female, never married, had at least a college education, and
were not currently used. The mean chronological age was 30.6
years. Most individuals had the HbSS SCD genotype and low SCD
severity as measured by the ASCQ-Me checklist.

Epigenetic age values and age acceleration/

deceleration

Epigenetic age values were compared with the chronological age
(Table 2). Scatterplots of these comparisons are shown in
supplemental Figure 1. Epigenetic age was highly correlated with
chronological age across 4 of the clocks evaluated (Horvath:
r = 0.88, P < 1e-5; Hannum: r = 0.89, P < 1e-5; PhenoAge: r = 0.85,
Table 1. Demographic and clinical characteristics of the 89

individuals with SCDIC

Characteristic

Sex: female 54 (60.67%)

Age 30.64 (7.97)

Marital status

Married 10 (11.24%)

Never married 68 (76.40%)

Other 11 (12.36%)

Education

Less than high school 10 (11.24%)

High school 16 (17.98%)

Some college 36 (40.45%)

College 17 (19.10%)

Graduate school 10 (11.24%)

Employment

Working now 38 (42.70%)

Disabled 24 (26.97%)

Student 14 (15.73%)

Other 13 (14.61%)

Genotype

Hb SS or sickle cell anemia 61 (68.54%)

Hb SC disease 20 (22.47%)

Hb S β0 thalassemia 5 (5.62%)

Hb S β+ thalassemia 3 (3.37%)

Sickle cell attacks in last 12 months

0 10 (11.63%)

1 8 (9.30%)

2 12 (13.95%)

3 10 (11.63%)

4 or more 46 (53.49%)

Sickle cell disease severity 1.03 (0.91)

Current hydroxyurea use 52 (60.47%)

The n-sizes and percentages are presented for categorical characteristics. Means and
standard deviations are presented for continuous characteristics.
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P < 1e-5; GrimAge: r = 0.88, P < 1e-5). DunedinPACE showed a
weak correlation with chronological age (r = 0.34, P = .001).

The average age acceleration/deceleration values varied widely
between the clocks. Regressing age acceleration/deceleration on
chronological age yielded the following results. Three of the 5
epigenetic clocks deviated significantly from chronological age:
Hannum (−3.98 years; P = 1.6e-17) and PhenoAge (−8.65 years;
P = 2.3e-23) showed large deceleration, and GrimAge (11.90
years; P = 7.3e-49) showed large acceleration. Horvath epigenetic
aging was not significant (0.40 years; P = .62). An increased pace
of aging was observed using the DunedinPACE clock (1.14 bio-
logical year per chronological year; P = .001).

Epigenetic age residuals

The summary statistics of epigenetic age residuals are shown in
Table 2. The PhenoAge residuals were significantly associated
with the SCD genotype (P = .03), none of the other residuals
were associated with the other phenotypes. Plots of the
residuals compared with chronological age are shown in
supplemental Figure 2. The residuals were randomly scattered
around zero, showing that the assumption of homoscedasticity
was preserved.

Associations with demographic and clinical

phenotypes

An ancestry plot of the SCDIC individuals generated in ADMIX-
TURE is shown in Figure 1. On average, the SCDIC cohort had
77% African ancestry. The majority component, estimated to be
the “African” component, falls within the previously published
estimates for African Americans.27,43

Associations of epigenetic age and epigenetic age residuals with
biological sex, SCD genotype, SCD disease severity, African
genetic ancestry, BCL11A rs11886868 genotype, and β-globin
haplotype are shown in Table 2. The SCD genotype was associ-
ated with PhenoAge (P = .02) and DunedinPACE (P < .001), but
not with any other clock. Biological sex, SCD disease severity,
genetic ancestry, BCL11A genotype, and β-globin haplotype
(49.4% homozygous Benin, 50.6% not homozygous Benin) were
not associated with any clock age or age residual.

Discussion

In this study, we report our findings on epigenetic aging in a cohort
of adult individuals with SCD. Given that this is the first study on
epigenetic aging in an SCD context to our knowledge, we not only
report the epigenetic aging estimates of the Duke SCDIC
Research Registry cohort and their associations with demographic
and clinical variables, but also assess the utility of the 5 epigenetic
clocks used to calculate these estimates in an African American
and SCD context. Among the 5 clocks examined, Horvath esti-
mated minimal age acceleration, Hannum and PhenoAge esti-
mated age deceleration, and GrimAge and DunedinPACE
estimated age acceleration. Consequently, the GrimAge and
DunedinPACE clocks lend support to our hypothesis of epigenetic
age acceleration in people with SCD.

First-generation Horvath and Hannum clocks produced estimates
of age acceleration in healthy individuals.10,12 The overall lack of
significance of first-generation clocks may be due to their design
9 JANUARY 2024 • VOLUME 8, NUMBER 1
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for predicting aging in relatively healthy individuals. The second-
generation PhenoAge and GrimAge clocks estimate “composite”
age, which combines chronological age and biological markers
informative for cellular aging and epigenetic regulation pro-
cesses.13,14 This may explain the very limited association observed
between SCD genotype and these clocks and not with any of the
other phenotypes. These observations align with previous assess-
ments of these clocks.23 Notably, the third-generation Dun-
edinPACE clock uses longitudinal measurements of methylation
probes, as opposed to the single-timepoint measurements used by
the other 4 clocks. Longitudinal measurements can more accu-
rately convey age-dependent methylation changes by accounting
for chronological age. This is particularly beneficial when charac-
terizing SCD, given that SCD pathogenesis occurs in an age-
dependent manner (eg, renal function and early mortality).44-46

Future development of epigenetic clocks may benefit from longi-
tudinal methylation data, which may better model the effects of
natural aging (as opposed to accelerated cellular aging caused by
chronic diseases). This may allow signals of accelerated aging to
be more readily identified and unconfounded with the natural
chronological age.

The variability in the age acceleration measures is also reflective of
differences in the clocks. A comparison of shared CpG probes is
presented in supplemental Table 1. The vast majority of probes
were unique to each clock, with only a few common across multiple
clocks and none common to 4 or all 5 clocks. The difference in the
used probes likely led to inconsistencies in the per-individual
epigenetic age estimates across the 5 clocks. The clocks also
differed based on the biomarkers measured, affecting which
probes were selected. For example, GrimAge selected probes that
corresponded with their 12 surrogate biomarkers of plasma protein
levels in addition to smoking pack-years, whereas Horvath and
Hannum selected probes agnostic of any covariates besides
chronological age. As epigenetic clocks are continually being
refined, both in the CpG probes used and the outcomes measured,
there is an opportunity for SCD-specific biomarkers and outcomes
to be used to develop an SCD epigenetic clock in future
studies.47,48

Moreover, the clocks were trained mostly on healthy tissues of
European descent. Their applicability to other chronic diseases,
such as SCD and other populations with differing genetic ances-
tries, remains to be investigated. Previous studies have discovered
differential epigenetic aging when analyzed against the genetic
background,49,50 motivating our own analysis of ancestry in indi-
viduals with SCD.

Epigenetic age and demographic and clinical

phenotypes

As this is the first study on epigenetic aging in an adult population
with SCD, no prior reference point exists for these associations.
Under the hypothesis that SCD causes physiological stress and
cellular damage that result in epigenetic modifications, more severe
forms of SCD should cause increased stress and damage,
resulting in larger epigenetic age differences. This is evidenced by
prior studies demonstrating that SCD genotype affects clinical
presentation and disease progression; individuals with SS or Sβ0-
thalassemia genotypes have a higher risk of acute chest syndrome,
pulmonary hypertension, and lower oxyhemoglobin than those with
EPIGENETIC AGING IN SCD 51
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SC or Sβ+-thalassemia.51 The evidence here supports this
expectation, in which SCD genotype is significantly associated with
PhenoAge age and DunedinPACE rate (Table 2).

We did not find any association between epigenetic age and
biological sex for any clocks. This differs from the Hannum study,
which found an association between sex and the aging rate in 2
cohorts of Caucasian and Hispanic individuals.12 Other studies
either adjusted for reported sex (PhenoAge,13 GrimAge14) when
constructing epigenetic aging metrics or did not find an association
with sex.52

We did not find an association between epigenetic aging and SCD
severity in this study. Most of the 89 individuals had an SCD
severity score of 0 or 1 and the vast majority of the “yes” responses
were for daily pain medication or regular blood transfusions.
Patients with more severe SCD progression typically experience
complications, such as spleen removal, retinopathy, or stroke,
which are also indicated on the ASCQ-Me checklist. Given that
these individuals are relatively young (mean age 30.64), their overall
SCD severity is lower and thus, they do not present with many of
the symptoms that often emerge later in life.44

Previous studies have found associations between epigenetic age
and genetic ancestry,13 which were not observed here. Importantly,
these studies evaluated differences across multiple ancestral
groups, whereas this study evaluated differences within a single
ancestral group. Larger cohorts of individuals with African ancestry
may be needed to determine whether variation within a single
ancestral group influences epigenetic aging in SCD. Calculations
of estimated ancestry in our cohort were consistent with those of
prior studies describing African American genetic ancestry in other
cohorts, thus, supporting our observed ancestry clusters.53-55

No association was found between epigenetic age and the
BCL11A or β-globin haplotypes. Although there are rich data
supporting these modifiers in SCD, it is possible that a larger and
older sample of patients with SCD will be needed to determine any
effect on epigenetic aging.
52 LE
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Epigenetic age and epigenetic age residuals

Given the strong correlation between epigenetic age and chro-
nological age for 4 of the 5 clocks examined (r > 0.7; Table 2), we
wanted to conceptualize the component of methylation age inde-
pendent of the natural aging effects of chronologic age. After
accounting for the effects of chronological age in Horvath, Han-
num, PhenoAge, and GrimAge, the clock residuals showed rela-
tively similar patterns of association with the demographic and
clinical phenotypes. Specifically, PhenoAge residuals were signifi-
cantly associated with the SCD genotype, but none of the other
clocks were associated with any of the other phenotypes.

Horvath, Hannum, PhenoAge, and GrimAge epigenetic clocks
scale the epigenetic age to units of biological years to facilitate
comparisons with biological age. DunedinPACE is a rate metric of
1 biological year per chronological year; therefore, in an individual
with no epigenetic age acceleration or deceleration, the pace of
aging would remain the same regardless of chronological age. Any
correlation between the pace of aging and chronological age
indicated age-dependent acceleration/deceleration. We observed
a weak but statistically significant correlation between chronolog-
ical age and DunedinPACE pace of aging. This provides evidence
for both age acceleration measured by DunedinPACE in our study
and age acceleration, which increases as patients naturally age.
Given the weak correlation, the residuals for DunedinPACE were
not calculated.

Limitations

Although this study is the first to present novel data on epigenetic
aging in SCD, it is an exploratory study based on a relatively small
cohort of 89 samples. Future studies will benefit from using addi-
tional samples when assessing the characteristics described in this
study. Regarding genetic ancestry, differences within a single
population (such as African Americans) are likely to be smaller than
the differences between multiple populations with larger variation in
ancestry. Other studies noting the significant effects of genetic
ancestry on epigenetic age have analyzed multiple cohorts from
different genetic backgrounds.49,50
9 JANUARY 2024 • VOLUME 8, NUMBER 1
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Furthermore, aging was assessed here in a SCD case-only cohort.
To better understand the effects of background genetic ancestry,
epigenetic ages could be calculated in control populations of healthy
age- and sex-matched Black or African American individuals with
methylation data and compared with those of individuals with SCD.
This would allow comparisons between cases and controls across
the clinical and genetic characteristics previously described,
including direct comparisons of epigenetic ages and components of
genetic ancestry. Epigenetic data generation on additional SCD-
relevant cohorts would allow comparisons between multiple cohorts.

Conclusion

To our knowledge, this study is the first to calculate epigenetic age
values for an SCD cohort of 89 adult individuals. We found that
each epigenetic clock yielded varying results: of the 5 clocks pre-
sented, GrimAge and DunedinPACE reported epigenetic age
acceleration, Hannum and PhenoAge reported age deceleration,
and Horvath reported neither acceleration nor deceleration.
GrimAge and DunedinPACE were associated with SCD genotype,
and all 5 clocks were correlated with chronological age. The
GrimAge and DunedinPACE clocks may be particularly relevant to
assess in future studies on epigenetic aging in SCD. As this is the
first study on epigenetic aging in an SCD cohort, additional analyses
are needed to further characterize and validate SCD-related epige-
netic aging. The development of future clocks may better model
chronic disease processes by including longitudinal methylation data
as well as incorporating cohorts from diverse genetic ancestries. The
results of this study allow for the investigation of the interpretability of
epigenetic ages when evaluating SCD clinical phenotypes.
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