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Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but
second-site BTK mutations lead to resistance
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Key Points

• BCR signaling is
inhibited by
pirtobrutinib in vitro
and in vivo regardless
of BTK C481S
mutation but is
reactivated in vivo at
progression.

• BTK mutations at the
gatekeeper site T474
and second-site
kinase-dead mutations
lead to resistance to
pirtobrutinib.
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Covalent inhibitors of Bruton tyrosine kinase (BTK) have transformed the therapy of

chronic lymphocytic leukemia (CLL), but continuous therapy has been complicated by the

development of resistance. The most common resistance mechanism in patients whose

disease progresses on covalent BTK inhibitors (BTKis) is a mutation in the BTK 481 cysteine

residue to which the inhibitors bind covalently. Pirtobrutinib is a highly selective,

noncovalent BTKi with substantial clinical activity in patients whose disease has progressed

on covalent BTKi, regardless of BTK mutation status. Using in vitro ibrutinib-resistant

models and cells from patients with CLL, we show that pirtobrutinib potently inhibits BTK-

mediated functions including B-cell receptor (BCR) signaling, cell viability, and CCL3/CCL4

chemokine production in both BTK wild-type and C481S mutant CLL cells. We demonstrate

that primary CLL cells from responding patients on the pirtobrutinib trial show reduced

BCR signaling, cell survival, and CCL3/CCL4 chemokine secretion. At time of progression,

these primary CLL cells show increasing resistance to pirtobrutinib in signaling inhibition,

cell viability, and cytokine production. We employed longitudinal whole-exome sequencing

on 2 patients whose disease progressed on pirtobrutinib and identified selection of

alternative-site BTK mutations, providing clinical evidence that secondary BTK mutations

lead to resistance to noncovalent BTKis.

Introduction

Covalent Bruton tyrosine kinase (BTK) inhibitors (BTKis) revolutionized the treatment landscape of
chronic lymphocytic leukemia (CLL). However, most patients who remain on therapy develop resistance,
er 2022; prepublished online on Blood
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Figure 1. Pirtobrutinib reduced BCR signaling and induced apoptosis in cells from patients with BTK WT CLL. (A-C) BTK WT CLL cells were treated with either

pirtobrutinib or ibrutinib with a dose range of 1.2 to 300 nM. Data shown are representative results from n = 7. (A) Representative western blot. (B) BTK Y223 phosphorylation

was normalized to total BTK and IC50 values were calculated using a 4-parameter fit in GraphPad Prism 9.3 software. (C) Densitometry plots for phospho-PLCγ2 (Y1217),

normalized to total PLCγ2. Boxes represent median values with the first and third quartiles; whiskers represent the maximum and minimum values. P values shown are for drug vs

dimethyl sulfoxide (control). *P ≤ .05, **P ≤ .01, and ***P ≤ .001 by mixed effect analysis of variance, Holm-Šidák test. (D-E) CellTrace Violet–labeled BTK WT CLL cells from

patients with CLL were incubated with growth stimulants as indicated in “Methods” and treated with 1 μM of either pirtobrutinib, ibrutinib, or acalabrutinib, and cell proliferation

was assayed by flow cytometry after a 10-day culture. (D) Histograms showing CTV profiles of 4 patients with BTK WT. Divided cells as a percent of total cells are automatically

calculated by the FlowJo software and included in the upper left of each panel. (E) Inhibition of CLL cell proliferation by the indicated drug treatment, normalized to dimethyl

sulfoxide, based on data in panel D. (F) Cells from patients with BTK WT CLL were treated with 1 μM of either pirtobrutinib, ibrutinib, or acalabrutinib for 48 hours. Apoptosis was

measured with Annexin V propidium iodide staining. Statistics were performed by one-way analysis of variance with Dunnett posttest; *P ≤ .05. Graphs generated using GraphPad

Prism software version 9.3. The data points for panels E and F are color coded by patient. Acala, acalabrutinib; Conc., concentration; CTV, CellTrace Violet; DMSO, dimethyl

sulfoxide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Ibr, ibrutinib; IgM, immunoglobulin M; Pirto, pirtobrutinib; Pt, patient.
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most commonly (50%-75%) from substitution of Cys481 by Ser at
the adenosine triphosphate–binding pocket of BTK, thereby abro-
gating covalent binding of irreversible BTKis.1-4 Other less common
1930 NAEEM et al
substitutions at this same site (p.C481R/F/Y/G), and gain-
of-function mutations in PLCγ2, occur at lower frequency than
p.C481S but also confer resistance to covalent BTKis.5-8
9 MAY 2023 • VOLUME 7, NUMBER 9
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Reversible or noncovalent BTKis have been developed to inhibit
BTK regardless of C481S mutation and offer a therapeutic alter-
native for patients who have experienced covalent BTKi treatment
failure.9,10 Noncovalent BTKis do not require binding to C481, and
they are designed to maintain activity against both wild-type (WT)
and C481 mutations. Noncovalent BTKis such as XMU-MP-3, CGI-
1746, fenebrutinib (GDC-0853), and nemtabrutinib (Arq-531/
MK-1026) have demonstrated potent activity against both WT and
C481S BTK in preclinical studies.11-14 Nemtabrutinib and pirto-
brutinib (LOXO-305) are currently in clinical trials in B-cell
malignancies and have demonstrated excellent antitumor efficacy;
pirtobrutinib in particular is very well tolerated.10,15

In this study we demonstrate the preclinical efficacy of pirtobrutinib
against WT and C481S BTK by evaluating its impact on viability,
proliferation, and chemokine production in CLL cells. We further
demonstrate that this ex vivo activity of pirtobrutinib declines as
patients develop clinical progression. Resistance mechanisms for
reversible BTKis are only starting to be described.16 To investigate
molecular mechanisms underlying disease progression, we per-
formed whole-exome sequencing on 2 patients whose disease
progressed on pirtobrutinib and show evidence that multiclonal
alternative-site BTK mutations confer resistance to noncovalent
BTKis.

Methods

Clinical samples

Samples were collected from patients enrolled in our CLL tissue
bank approved by the Dana-Farber/Harvard Cancer Center Insti-
tutional Review Board, and written informed consent was obtained
before sample collection. For the patients with disease progression
on pirtobrutinib, serial peripheral blood (tumor) and saliva (normal)
samples were collected before and at relapse during each suc-
cessive therapy including pirtobrutinib.

Cell culture and transfections

The B7.10 cell line, which lacks endogenous BTK, was generated
from the DT40 chicken lymphoma in T. Kurosaki’s laboratory as
previously detailed.17,18 Site-directed mutagenesis was used to
generate 6 single and 3 double BTK mutants as described previ-
ously.19,20 Single mutants were T474I, T474L, M477I, C481R,
C481S, and L528W; and double mutants were M477I/C481S,
M477I/L528W, and C481S/L528W. WT BTK was used as
control.

Clonality estimation using ABSOLUTE

Copy number analysis and estimation of tumor purity, ploidy, and
cancer cell fraction (CCF) of mutations were determined using
the computational method, ABSOLUTE.21 Phylogenetics and
Figure 2. Pirtobrutinib inhibits BCR signaling in a BTK C481S in vitro model and

BTK C481S cells were treated with either pirtobrutinib or ibrutinib with a dose range of 1.

experiments. BTK Y223 phosphorylation was normalized to total BTK in HEK293 BTK W

parameter fit in GraphPad Prism software version 9.3. (D-G) Cells from patients with BTK C

acalabrutinib for 1 hour followed by anti-IgM stimulation (10 μg/mL) for 30 minutes. (D) Rep

(F), and phospho-ERK (G). The data points are color coded by patient. P values shown are

mixed effect models. *P ≤ .05 and **P ≤ .01. (H,I) Densitometry plots for phospho-BTK no

VAF, variant allele frequency.

1932 NAEEM et al
subclonal dynamics associated with resistance were modeled
using the PhylogicNDT and Concerti tools.22-24

For additional information, please refer to the supplemental
Methods.

Results

Pirtobrutinib is cytotoxic and inhibits BCR

signaling in cells from patients with CLL

To confirm that pirtobrutinib is active and inhibits the B-cell
receptor (BCR) pathway, we first investigated its activity in CLL-like
cell lines, MEC1 and OSU-CLL. We compared the effects of pir-
tobrutinib with the covalent inhibitors ibrutinib and acalabrutinib on
cell viability and BCR signaling. All 3 drugs demonstrated similar
inhibition of viability with comparable 50% inhibitory concentration
(IC50) values and similar inhibitory effects on the BCR pathway
(supplemental Figure 1A-D).

To evaluate inhibition of BCR signaling in cells from patients with
CLL with WT BTK, we treated the cells with increasing doses of
pirtobrutinib and ibrutinib for 1 hour. Ibrutinib has been shown to
inhibit phosphorylation of BTK, PLCγ2, and extracellular signal-
regulated kinase (ERK).25 As expected, our data show that ibruti-
nib inhibits phospho-BTK with an IC50 of 0.7 nM. Similarly,
pirtobrutinib also potently inhibits phospho-BTK with an IC50 of
1.1 nM (Figure 1A-B; supplemental Figure 2). Both drugs also
inhibited phosphorylation of PLCγ2, the immediate downstream
substrate of BTK, at concentrations as low as 11.1 nM (Figure 1C).

We then evaluated the effect of pirtobrutinib on proliferation of CLL
cells. To achieve this, CellTrace Violet–labeled CLL cells were
stimulated to proliferate with stimulants and HS-5 stroma cocul-
ture, and treated with 1 μM of either pirtobrutinib, ibrutinib, or
acalabrutinib for 10 days before assessment of proliferation by flow
cytometry. All 3 drugs demonstrated similar inhibitory effects on
proliferation (Figure 1D-E; supplemental Figure 3).

We then compared the cytotoxicity of pirtobrutinib with ibrutinib
and acalabrutinib in primary CLL cells from patients by exposing
the cells to 1 μM drug concentrations. After 48 hours, we observed
a significant induction of apoptosis with pirtobrutinib and ibrutinib
compared with control (Figure 1F).

Pirtobrutinib inhibits BCR signaling mediated by

BTK C481S

Pirtobrutinib was designed to maintain activity despite C481
mutation. To test this, we used an in vitro BTK C481S model of
stably transfected HEK293 cells expressing either BTK WT or
C481S BTK. Cells were treated with a dose range of 1.2 to
300 nM of either pirtobrutinib or ibrutinib for 2 hours. In BTK
in cells from patients with BTK C481S CLL. (A-C) HEK293 BTK WT and HEK293

2 to 300 nM for 2 hours. (A) Representative western blot image from 3 independent

T (B) and HEK293 BTK C481S (C) cells. IC50 values were calculated using a 4-

481S CLL (n = 3) were pretreated with indicated dosages of pirtobrutinib, ibrutinib, or

resentative western blot images. Quantification of phospho-BTK (E), phospho-PLCγ2
for drug vs DMSO stimulated (ie, IgM stimulated). Differences assessed using linear

rmalized to total BTK. Graphs generated using GraphPad Prism software version 9.3.
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WT–expressing cells, for both pirtobrutinib and ibrutinib, we
observed similar inhibition of phosphorylated BTK (phospho-BTK)
at low nanomolar potency, IC50 of 4.2 nM and 2.3 nM, respectively;
however, against the C481S mutation, ibrutinib lost its efficacy
completely whereas pirtobrutinib maintained potency with an IC50

of 16 nM (Figure 2A-C; supplemental Figure 4). A similar inhibition
pattern was observed in phospho-PLCγ2 with pirtobrutinib main-
taining the same inhibition efficiency against both WT and mutant
BTK (Figure 2A).

We then treated CLL cells from 3 patients with C481S mutation
with 0.6 μM pirtobrutinib, ibrutinib, or acalabrutinib and saw sig-
nificant decrease in phosphorylation of BTK and PLCγ2 in
pirtobrutinib-treated cells. Although phospho-BTK was slightly
decreased in ibrutinib-treated cells, the overall inhibitory effect of
the covalent BTKi was greatly reduced (Figure 2D-F). Furthermore,
we also observed a significant reduction in phosphorylation of the
downstream signaling molecule ERK at 1.7 μM of pirtobrutinib,
whereas ibrutinib and acalabrutinib showed no significant change
(Figure 2D,G). When we grouped the 3 patients with the C481S
BTK mutation according to their C481S VAFs, in the patient with a
low C481S VAF of 9%, phospho-BTK inhibition with 0.6 μM pir-
tobrutinib was ≥80%, whereas ibrutinib and acalabrutinib achieved
60% inhibition (Figure 2H). In the other 2 patients with VAFs of
89% and 88%, respectively, at 0.6 μM, pirtobrutinib maintained an
inhibitory effect of ≥80% on phospho-BTK. Phospho-BTK inhibi-
tion of ibrutinib was only ~50% and acalabrutinib had an inhibitory
effect of <10%, consistent with the known lack of acalabrutinib
activity against C481S, whereas ibrutinib retains some noncovalent
inhibition, particularly at higher concentrations (Figure 2I).2,26

Pirtobrutinib is cytotoxic and reduces cytokine

secretion in cells from patients with BTK C481S CLL

CCL3 and CCL4 are associated with tumor burden in CLL and
have proven to be an excellent biomarker of response to
BTKis.27,28 To evaluate the effect of pirtobrutinib on cytokine
secretion, CLL cells from patients with either BTK WT or BTK
C481S were treated with 1 μM pirtobrutinib, ibrutinib, or acalab-
rutinib for 24 hours, and the levels of CCL3 and CCL4 in the
supernatants were analyzed by enzyme-linked immunosorbent
assay. Although pirtobrutinib, ibrutinib, and acalabrutinib inhibited
CCL3 and CCL4 at similar levels in BTK WT cells, only pirto-
brutinib significantly inhibited both cytokines in C481S cells
(supplemental Figure 5A-B).

Pirtobrutinib inhibits BCR signaling and cytokine

secretion and proliferation in responding patients

with CLL

We evaluated the effect of pirtobrutinib on BCR signaling and
cytokine secretion and proliferation in CLL cells from responding
Figure 3. Pirtobrutinib inhibits BCR signaling and cytokine secretion and prolife

Proteins were evaluated in defrosted lysates, without in vitro treatment, from cells from 2 pa

phospho-PLCγ2, and phospho-ERK were analyzed by immunoblotting. (A) Western blots

phospho-ERK normalized to the corresponding total protein. Differences assessed by analy

by Luminex multiplex assay and enzyme-linked immunosorbent assay, respectively. Graphs

color coded by patient. (G) CellTrace Violet–labeled BTK WT and BTK C481S CLL cells

growth stimulants as indicated in “Methods” and treated in vitro with 1 μM pirtobrutinib. Ce

percent of total cells are automatically calculated by the FlowJo software and included in

1934 NAEEM et al
patients currently enrolled in the pirtobrutinib phase 1 trial. We
looked at 3 responding patients in total (2 with BTK WT and 1 with
BTK C481S). Although phospho-BTK was initially increased in 1
patient with WT BTK at 3 months, densitometry analysis from all 3
patients showed a significant decrease in phospho-BTK and
phospho-PLCγ2 at 14 months compared with baseline, irre-
spective of BTK mutation status (Figure 3A-C). Similarly, although
elevated phospho-ERK was observed in cells from 2 patients at 3
months, all 3 patients showed an overall decrease in phospho-ERK
in their CLL cells by 14 months (Figure 3D).

All responding patients tested showed steady plasma CCL3 levels
across all time points tested (Figure 3E). Similarly, all patients
tested maintained CCL4 at low levels up to 14 months (Figure 3F).
To assay the effect of pirtobrutinib on proliferation, CellTrace
Violet–labeled cells were treated with 1 μM pirtobrutinib, and cell
proliferation was assayed by flow cytometry after 10-day culture.
We observed steady inhibition of proliferation across all time points
in both BTK WT and C481S cells (Figure 3G).

At progression on pirtobrutinib, CLL cells show

reactivated BCR signaling, cytokine secretion, and

increased cell viability

We looked at 3 patients whose disease progressed during pirto-
brutinib therapy and found an increase in BCR signaling pathway
activation, as evidenced by increased phosphorylation of BTK, AKT,
and ERK at progression (Figure 4A-C). Both CCL3 and CCL4
levels rapidly declined in all 3 patients at 3 months while responding
and then sharply increased at progression (Figure 4D-E). Further-
more, the CLL cells from all 3 patients at progression were more
resistant to pirtobrutinib in vitro, with significantly less reduction in
viability with in vitro drug treatment (Figure 4F).

We further evaluated the effect of pirtobrutinib in vitro, comparing
cells from 2 patients at progression vs baseline. At the progression
time points, the CLL cells demonstrated reduced induction of
apoptosis compared with cells at baseline, after in vitro pirto-
brutinib treatment (Figure 4G-H). Similarly, for both patients, cells
at progression showed increased resistance to inhibition of prolif-
eration in vitro by pirtobrutinib (Figure 4I-J).

Pirtobrutinib resistance is associated with

second-site BTK mutations

For 2 patients whose disease progressed on pirtobrutinib, serial
peripheral blood and matched normal samples were collected for
whole-exome and RNA sequencing, including before and at relapse
on pirtobrutinib (Table 1). One patient with CLL (patient-identifying
code, CLL Pt 6) had 16 samples including pretreatment, on-
treatment, and at relapse on acalabrutinib, vecabrutinib, and pirto-
brutinib (Table 1). The phylogenetic tree shows a truncal clone
ration in responding cells from patients with BTK WT and C481S CLL. (A-D)

tients with BTK WT and 1 patient with BTK C481S CLL, and levels of phospho-BTK,

for each patient. (B-D) Densitometry plots for phospho-BTK, phospho-PLCγ2, and
sis of variance followed by Tukey test. (E-F) Plasma CCL3 and CCL4 levels measured

generated using GraphPad Prism software version 9.3. Data points in panels B-F are

were cocultured with HS-5 green fluorescent protein stroma cells, incubated with

ll proliferation was assayed by flow cytometry after a 10-day culture. Divided cells as a

the upper left of each panel. *P ≤ .05 and **P ≤ .01.
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Figure 4. CLL cells from patients with disease progression on pirtobrutinib show increased BCR signaling, increased cytokine secretion, reduced inhibition of

proliferation, reduced in vitro cell death, and increased cell viability. (A-J) Primary CLL cells obtained at baseline (day 0), responding, and progression time points during

pirtobrutinib treatment were used in the analysis. (A) Western blots of lysates from CLL cells of 3 patients whose disease progressed, looking at total and phospho-BTK, total and

phospho-ERK, total and phospho-AKT, and GAPDH without additional in vitro drug treatment. (B-C) Densitometry plots for phospho-BTK, phospho-ERK, and phospho-AKT

normalized to the corresponding total protein. (D-E) Plasma CCL3 and CCL4 levels measured by Luminex multiplex assay and enzyme-linked immunosorbent assay, respectively.
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(green) in all samples, carrying mutations in known CLL cancer
driver genes (Figure 5A-B; supplemental Tables 1 and 3). Clonal
analysis of samples during acalabrutinib treatment shows steady
selection of a subclone (orange) harboring BTK p.C481S mutation,
a known mechanism of acalabrutinib resistance, with CCF of 92%
(95% confidence interval, 87-98) at relapse. This clone maintained
this CCF level during therapy with vecabrutinib, a noncovalent BTKi
with lower clinical effectiveness that is no longer in development in
CLL,29 but then steadily decreased during effective therapy with
pirtobrutinib. Concerti’s time-scaled phylogenetic tree shows the
birth of a new clone containing the BTK gatekeeper mutation,
p.T474I, during acalabrutinib treatment, which then grows rapidly
under pirtobrutinib treatment, dominating nearly the entire cancer
cell population and replacing the prior p.C481S clone (Figure 5A-C;
supplemental Table 5). This complete clonal shift during pirtobrutinib
treatment suggests that pirtobrutinib effectively inhibits the p.C481S
clone, whereas the p.T474I gatekeeper clone is likely driving resis-
tance in this patient. In support of this, we also observed an addi-
tional gatekeeper clone at low CCF, BTK p.T474L, as well as
another BTK mutation, p.M477I (Figure 5A-C; Table 1). Manual
inspection of variant calls using Integrative Genomics Viewer30 (IGV)
showed that BTK p.M477I was in cis with the dominant p.T474I
clone, indicating that they co-occur in the same cells. In contrast, the
p.T474L is in trans to p.M477I, that is, in different alleles
(supplemental Figure 6A). Inspection of RNA sequencing reads on
IGV confirmed these resistance mutations in similar clonal pro-
portions to the DNA (supplemental Figure 7A; Table 1). Treatment
with pirtobrutinib also led to the development of another subclone
from the p.T474I-containing clone, carrying acquired mutations in the
known cancer-related genes, RAC1 and TP53BP2 (Figure 5A-C;
supplemental Table 1).

Another patient with CLL (CLL Pt 7) had 10 samples evaluated
before, during, and at relapse on ibrutinib and pirtobrutinib
(Table 1). During ibrutinib therapy, we observed a steady increase
in a clone (cyan) harboring mutations in known CLL driver genes,
TP53 p.S240G and SF3B1 p.K666N, reaching CCFs of >40% at
relapse on ibrutinib (Figure 5D-E; supplemental Tables 2 and 4).
We also noted a significant increase (>25%) in a clone (purple)
carrying the BTK p.C481R mutation (CCF, 28%) and a 5%
increase in a clone (black; CCF, 14%) harboring the mutations
BTK p.C481S and TP53 p.R196*. All clones remained roughly
stable during chimeric antigen receptor T-cell therapy between
ibrutinib and pirtobrutinib. During pirtobrutinib treatment, the purple
and black clones in the phylogenetic plot displayed different
dynamics, both shifting their CCFs. The purple clone, that harbors
BTK p.C481R, decreased to a CCF of 15%, whereas the black
clone, which carries the BTK p.C481S and TP53 p.R196* muta-
tions, increased its CCF to 31% at relapse on pirtobrutinib
(Figure 5D; supplemental Tables 2 and 4). Concerti’s phylogenetic
tree also captures the birth of a resistant clone harboring BTK
Figure 4 (continued) Data points in panels B to E are color coded by patient. (F) CLL cell

with indicated doses of pirtobrutinib for 48 hours and effect on viability was analyzed using C

(G-J) Cells were cocultured with HS-5 green fluorescent protein stroma cells. (G-H) Apopto

CTV-labeled cells were stimulated to proliferate as described in “Methods” and incubated w

panels G-J represent mean from 3 technical replicates. Graphs generated using GraphPa

calculate significance. *P ≤ .05 and **P ≤ .01. Prog, progression; resp, responding.
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p.L528W, which increased during pirtobrutinib therapy, reaching a
CCF of 30% at time of progression (Figure 5F; supplemental
Figure 6B; supplemental Table 6). BTK p.L528W has been
described as conferring resistance to ibrutinib and zanubrutinib in
CLL and has recently been associated with resistance to pirto-
brutinib.16 The rapid increase of BTK p.L528W CCF from 2% to
30% with disease progression during pirtobrutinib suggests that
BTK p.L528W mutation may be contributing to resistance in 1
patient with CLL (CLL Pt 7). Furthermore, this mutation is prefer-
entially expressed in our RNA sequencing data, rising from 1% VAF
at pirtobrutinib initiation to 43% at 3 months and 82% at pro-
gression (supplemental Figure 7B). This clone also carries a TP53
p.Q317* at low levels (CCF, 6%), which may also be contributing
to disease progression (Figure 5C-F; supplemental Tables 2
and 6).
Docking pirtobrutinib on BTK

We sought to understand pirtobrutinib binding to BTK to under-
stand the effect of these mutations. Covalent and noncovalent
BTKis bind predominantly in different orientations. Analysis of
residues related to binding distance in the structures indicated that
many of the binding residues are still shared, although there are
also type-specific interactions.31 Wang et al reported that pirto-
brutinib would bind similarly to ibrutinib.16 We combined our
experimental evidence with that of Wang et al and conclude that
pirtobrutinib likely binds in a mode more similar to other non-
covalent inhibitors. Our analysis of the binding sites was based on
4 experimental inhibitor structures: 2 covalent (ibrutinib and zanu-
brutinib) and 2 noncovalent inhibitors (fenebrutinib and RN486).31

Combined, the 2 studies indicate variations at positions likely to
affect pirtobrutinib binding. Wang et al indicated 5 such residues:
V416, A428, M437, T474, and L528. M437 has not been found to
interact with inhibitors of either class. V416 interacts with ibrutinib
but not with the other covalent inhibitor, zanubrutinib, whereas it
binds to both noncovalent inhibitors. A428 binds to zanubrutinib
and interacts with both noncovalently binding molecules. T474
binds to all 4 investigated inhibitors. L528 binds to 1 representative
from each category. Combined, these results suggest that residues
that affect pirtobrutinib binding may be in common with other
noncovalent inhibitors. When we combine our results for variants
M477 and C481, which bind equally well to both types of inhibitors,
the binding data support a noncovalent inhibitor binding mode. The
likely binding mode was obtained by docking pirtobrutinib to the
structure of BTK with CGI-1746. Pirtobrutinib includes highly polar
residues, with 3 and 1 fluoride residues, respectively, located at
opposite ends of the molecule. The single fluoride group was
docked to enable interaction with the CGI-1746 isopropyl group.
The opposite end could interact with the sulfhydryl group of C481
and orient the molecule (Figure 6A). Pirtobrutinib is a flexible
s at responding and progression time points for each of the 3 patients were incubated

ellTitre-Glo reagent. Data reported as mean ± standard error of the mean from n = 3.

sis was induced by 1 μM pirtobrutinib for 48 hours and analyzed by flow cytometry. (I-J)

ith or without 1 μM pirtobrutinib with proliferation analyzed by flow cytometry. Data in

d Prism software version 9.3. Analysis of variance and paired t test were used to
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Table 1. Time points and genetic characteristics of patients with CLL and disease progression

Patient-

identifying

code Time point* Sample ID Drug Days from Dx WBC count

Absolute

lymphocyte count

BTK mutations, CCF (%)

(whole-exome sequencing) BTK mutations, VAF (%) (RNA)

CLL Pt 6 CLL Pt 6 #1 Pretreatment 97 139.6 Not available No BTK mutation detected No BTK mutation detected

CLL Pt 6 #2 After BR+L, before Acala 868 181.45 163.31 No BTK mutation detected No BTK mutation detected

CLL Pt 6 #3 Acala 1184 64.46 59.95 No BTK mutation detected No BTK mutation detected

CLL Pt 6 #4 Acala 1533 19.48 14.81 No BTK mutation detected No BTK mutation detected

CLL Pt 6 #5 Acala 1878 21.42 16.06 p.C481S, 16 p.C481S, 8

CLL Pt 6 #6 Acala 2037 20.14 13.89 p.C481S, 47; p.T474I, 3 p.C481S, 64; p.T474I, 2

CLL Pt 6 #7 Acala 2212 51.4 40.61 p.C481S, 92; p.T474I, 4

CLL Pt 6 #8 Veca 2261 102.61 96.46 p.C481S, 100; p.T474I, 9 p.C481S, 93; p.T474I, 3

CLL Pt 6 #9 Veca 2345 237.38 227.88 p.C481S, 93; p.T474I, 3 p.C481S, 91; p.T474I, 2

CLL Pt 6 #10 Veca 2429 356.2 338.39 p.C481S, 97; p.T474I, 2 p.C481S, 91; p.T474I, 2

CLL Pt 6 #11 Veca 2492 359.32 341.36 p.C481S, 97; p.T474I, 3 p.C481S, 86; p.T474I, 6

D 0 CLL Pt 6 #12 Pirto 2599 363.47 341.66 p.C481S, 95; p.T474I, 5 p.C481S, 87; p.T474I, 7

3 mo CLL Pt 6 #13 Pirto 2681 148.37 139.47 p.C481S, 69; p.T474I, 24 p.C481S, 40; p.T474I, 32

6 mo CLL Pt 6 #14 Pirto 2765 74.81 65.08 p.C481S, 31; p.T474I, 62; p.T474L, 3 p.C481S, 12; p.T474I, 71; p.T474L, 2

9 mo CLL Pt 6 #15 Pirto 2856 61.58 54.81 p.C481S, 6; p.T474I, 89; p.T474L,
4; p.M477I, 2

p.C481S, <1; p.T474I, 85; p.T474L, 6

12 mo CLL Pt 6 #16 Pirto 2941 105.72 97.26 p.C481S, 2; p.T474I, 99; p.T474L,
5; p.M477I, 2

p.C481S, <1; p.T474I, 87; p.T474L, 8

CLL Pt 7 CLL Pt 7 #1 After FCR 2109 9.5 4.93 No BTK mutation detected

CLL Pt 7 #2 Ibr 3266 4.48 2.52 No BTK mutation detected

CLL Pt 7 #3 Ibr 4484 21.32 17.51 p.C481S, 6; p.C481R, 33 p.C481S, 7; p.C481R, 18

CLL Pt 7 #4 Ibr after progression 4532 70.97 38.32 p.C481S, 11; p.C481R, 34 p.C481S, 14; p.C481R, 40

CLL Pt 7 #5 KTE-X19 CAR-T therapy 4800 12.86 8.33 p.C481S, 16; p.C481R, 31; p.L528W, 1 p.C481S, 25; p.C481R, 24; p.L528W, 2

CLL Pt 7 #6 KTE-X19 CAR-T 4813 27.53 23.18 p.C481S, 4; p.C481R, 29; p.L528W, 1 p.C481S, 21; p.C481R, 27; p.L528W, 2

D 0 CLL Pt 7 #7 Pirto 4918 26.71 21.9 p.C481S, 18; p.C481R, 25; p.L528W, 2 p.C481S, 23; p.C481R, 51

3 mo CLL Pt 7 #8 Pirto 5009 54.04 50.69 p.C481S, 37; p.C481R, 28; p.L528W, 4 p.C481S, 22; p.C481R, 11; p.L528W, 43

5.8 mo CLL Pt 7 #9 Pirto 5094 27.2 19.72 p.C481S, 41; p.C481R, 22; p.L528W, 7 p.C481S, 7; p.C481R, 5; p.L528W, 82

8 mo CLL Pt 7 #10 Pirto after progression 5161 30.85 26.99 p.C481S, 28; p.C481R, 20; p.L528W, 30 p.C481S, 5; p.C481R, 2; p.L528W, 91

p.C481S (c.1442G>C); p.C481R (c.1441T>C).
p.T474I (c.1421C>T); p.T474L (two nucleotide changes c.1420A>C; c.1421C>T).
p.M477I (c.1431G>C).
p.L528W (c.1583T>G).
BR + L, bendamustine, rituximab, and lenalidomide; KTE-X19 CAR-T, experimental anti-CD19 chimeric antigen receptor T-cell therapy (Kite); FCR, fludarabine, cyclophosphamide, and rituximab; Veca, vecabrutinib.
*Time point indicates the sample time points (months after pirtobrutinib treatment), which correspond to those used in Figure 4.
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molecule, thus, bond angles were adjusted and rotated to make it
fit into the binding pocket.

BTK gatekeeper mutations T474I and T474L, but

not other observed BTK mutations, can activate

proximal BCR signaling

To investigate the impact of the mutations on BCR activation, we
generated 6 single and 3 double mutants using site-directed
mutagenesis and expressed them in the BTK-null DT40 B-cell
line. Supplemental Table 7 summarizes the results obtained for the
9 variants and Figure 6B-E depicts representative results. Only
T474I, T474L, and C481S mutants showed adequate kinase
activity, whereas all the other single or double mutants (M477I,
M477I/C481S, M477I/L528W, C481R, L528W, and C481S/
L528W) essentially lacked kinase activity as judged by phosphor-
ylation of BTK at Y22319,20 and PLCγ2 at Y753 (Figure 6B-E;
supplemental Table 7). Mutations that lack kinase activity are
intrinsically resistant to inhibitors of kinase activity, thus, drug
sensitivity could only be assessed for mutations that activate
proximal BCR signaling. The C481S variant was resistant to
0.5 μM ibrutinib, as expected, but not to 0.1 μM pirtobrutinib
(Figure 6B). Conversely, the T474I and T474L variants were sen-
sitive to 0.5 μM ibrutinib but resistant to 0.1 μM pirtobrutinib
(Figure 6E). Interestingly, phosphorylation of AKT and ERK were
retained downstream, even with mutations that failed to activate
proximal BCR signaling (Figure 6B-E; supplemental Figure 8A-D).
Although a slight inhibition of phosphorylation of AKT and ERK was
observed in pirtobrutinib-treated cells with the C481S variant,
these pathways were not inhibited by ibrutinib or pirtobrutinib in
cells expressing any of the other mutations. Furthermore, phos-
phorylation of AKT and ERK was also observed in the WT B7.10
cell line, which lacks endogenous BTK, demonstrating significant
activation of these pathways independent of BTK (Figure 6F).
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Discussion

Emergent resistance against covalent BTKis is a growing problem
in CLL, from 50% to 75% of patients developing mutation of the
target Cys481 residue at the adenosine triphosphate–binding
pocket of BTK, thereby abrogating covalent BTKi binding.1-4

Here, we characterize the activity of the noncovalent BTKi pirto-
brutinib against WT and C481S-mutant BTK, using both an in vitro
C481S BTK model system and primary CLL cells from patients
with CLL. We demonstrate that pirtobrutinib maintains activity
against C481S and inhibits the BCR pathway similarly to C481
WT CLL, providing rationale for its study in patients refractory to
covalent BTKis, where significant clinical activity, and, in fact,
comparable clinical activity, to that seen against C481 WT CLL,
has already been demonstrated.10 Furthermore, we demonstrate
that patients responding to pirtobrutinib on clinical trial show
Figure 5. BTK gatekeeper and alternate-site mutation selected during pirtobruti

mutations for 2 patients with CLL (CLL Pt 6 and CLL Pt 7) that progressed on pirtobrutinib

derived using PhylogicNDT for 2 patients (CLL Pt 6 and CLL Pt 7). Each line represents th

Cluster tool, at different time points. Shading represents the 95% confidence interval. (B,E

clonal and subclonal architecture. (C,F) Time-scaled Concerti fish plot and tumor evolutio

the 2 patients (CLL Pt 6 and CLL Pt 7). Clones are sized proportionally to their prevalence a

panels for each patient. Speb, spebrutinib; Ven, venetoclax.
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sustained inhibition of BCR signaling, whereas patients in whom
disease progression had started show reactivation of BCR
signaling. This reactivation is associated with the development of
multiclonal second-site BTK mutations, many of which lack the
ability to activate proximal BCR signaling in a heterologous cell line
model. The convergent evolution and oligoclonality of these BTK
mutations are striking, and consistent with prior observations with
BTK mutations occurring during therapy with covalent inhibitors.
Also striking is the reactivation of phosphorylation of AKT and ERK
further downstream of the BCR, even in the absence of proximal
signaling and indeed in the absence of BTK in a heterologous cell
line.

Consistent with a recent report,32 our data show that pirtobrutinib
inhibits BCR signaling downstream of both WT and C481S CLL in a
heterologous cell line model and in patient cells.32 Although Aslan
et al32 observed no clear difference in response between pirto-
brutinib and ibrutinib, in vitro incubations of CLL C481S cells in this
study demonstrated a noticeably greater sensitivity to pirtobrutinib
compared with ibrutinib or acalabrutinib, an observation that is likely
attributable to the high C481S VAFs in samples in this study
compared with samples in the aforementioned study.32 In cells of
patients with CLL, pirtobrutinib significantly reduces secretion of
CCL3 and CCL4 in vitro, regardless of C481S. Similarly, CLL cells
from patients responding to pirtobrutinib on the clinical trial show
inhibited BCR signaling and cytokine secretion and proliferation
in vitro. The increase in phospho-BTK and phospho-ERK observed
after 2 cycles of therapy in some responding patients is consistent
with recently published data, which showed that the initial decrease
in BCR signaling in CLL cells from patients after pirtobrutinib
treatment was reversed after 2 cycles of therapy.32 Our analysis,
however, shows that prolonged treatment up to 14 months in
responding patients leads to an overall decrease in BCR signaling.
At time of progression, however, we see reactivated phospho-BTK,
phospho-ERK, and phospho-AKT as well as decreased cellular
responsiveness to pirtobrutinib treatment in vitro, as measured by
inhibition of proliferation, induction of apoptosis, and secretion of
CCL3 and CCL4.

We evaluated the genetic mechanisms of resistance in 2 patients
whose disease initially responded but then progressed on pirto-
brutinib. Our data provide clinical evidence that gatekeeper and
alternative-site BTK mutations lead to resistance to noncovalent
BTKis, similar to a recent report.16 The BTK gatekeeper mutation
p.T474I identified in a patient with CLL (CLL Pt 6) showed strong
clonal selection during pirtobrutinib therapy, effectively replacing
the prior C481S clone and demonstrating that mutation of this
gatekeeper residue leads to clinical resistance to this noncovalent
inhibitor. This rapid selection contrasts with the findings during
treatment with vecabrutinib, a noncovalent BTKi with lesser clinical
activity, when the p.C481S mutation remained largely unchanged.
During pirtobrutinib therapy, the same clone that contains p.T474I
nib therapy for CLL. (A-F) Subclonal structure and clonal evolution of somatic

derived using PhylogicNDT and Concerti. (A,D) Clonal evolution of somatic mutations

e CCF distribution dynamics of mutation clusters, generated using the PhylogicNDT

) Phylogenetic tree (built by the PhylogicNDT BuildTree tool) represents the

n tree where width of the fish plot corresponds to absolute lymphocyte counts for

nd the tree is aligned by sample time point. Subclones are matched in color across the

PIRTOBRUTINIB IN CLL 1939



B

pBTK (Y223)
pBTK (Y551)

BTK

Actin

Anti-IgM/Perv

ERK

AKT
PLC�2

pPLC�2 (Y753)

pAKT (S473)

pERK (Y204)

BTK C481R BTK C481S

+ – + + + – + +

P
irt

o 
0.

1�
M

Ib
r 0

.5
 �

M

P
irt

o 
0.

1�
M

Ib
r 0

.5
 �

M

D
M

S
O

D
M

S
O

D
M

S
O

D
M

S
O

A
Ibrutinib pirtobrutinib

M437

A428

V416

T474

L528
M477

C481

C

+ – + + + – + +

BTK M477I BTK WT

P
irt

o 
0.

1�
M

Ib
r 0

.5
 �

M

P
irt

o 
0.

1�
M

Ib
r 0

.5
 �

M

D
M

S
O

D
M

S
O

D
M

S
O

D
M

S
O

pBTK (Y223)

pBTK (Y551)

BTK

Actin

Anti-IgM/Perv

ERK
AKT

PLC�2

pPLC�2 (Y753)

pAKT (S473)

pERK (Y204)

D
BTK L528W

P
irt

o 
0.

1�
M

Ib
r 0

.5
 �

M

D
M

S
O

D
M

S
O

+ – + +

pBTK (Y223)
pBTK (Y551)

BTK

Actin

Anti-IgM/Perv

ERK

AKT

PLC�2

pPLC�2 (Y753)

pAKT (S473)

pERK (Y204)

E
BTK T474I BTK T474L

+ – + + + – + +

P
irt

o 
0.

1�
M

Ib
r 0

.5
 �

M

P
irt

o 
0.

1�
M

Ib
r 0

.5
 �

M

D
M

S
O

D
M

S
O

D
M

S
O

D
M

S
O

pBTK (Y223)
pBTK (Y551)

BTK

Actin

Anti-IgM/Perv

ERK

AKT

PLC�2

pPLC�2 (Y753)

pAKT (S473)
pERK (Y204)

F
Wild-Type B7.10 (BTK null)

+ – + + + – + +

P
irt

o 
0.

1�
M

Ib
r 0

.5
 �

M

P
irt

o 
0.

1�
M

Ib
r 0

.5
 �

M

D
M

S
O

D
M

S
O

D
M

S
O

D
M

S
O

pBTK (Y223)

pBTK (Y551)

BTK

Actin

Anti-IgM/Perv

ERK
AKT

PLC�2

pPLC�2 (Y753)

pAKT (S473)
pERK (Y204)

Figure 6. BTK gatekeeper mutations T474I and T474L, but not other observed BTK mutations, can activate proximal BCR signaling. (A) Model of human BTK kinase

domain binding modes of covalent inhibitor ibrutinib (orange) and noncovalent inhibitor pirtobrutinib (cyan). Upper domain is in light gray and lower domain is in dark gray. (B-E)

B7.10 cells (DT40 cells lacking endogenous BTK) were transfected with BTK C481R, BTK M477I, BTK L528W, T474I BTK, T474L BTK, or C481S BTK, or WT BTK as a

control. Cells were starved in medium not supplemented with serum 36 hours after transfection, and treated with 0.1 μM pirtobrutinib for 2.5 hours, or 0.5 μM ibrutinib or DMSO
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also harbors a novel previously undescribed BTK mutation identi-
fied as p.M477I that is present at very low CCF (2%) in the same
cells as p.T474I, and that we show to be inactivating and is only
acquired at progression on pirtobrutinib. Furthermore, we observed
convergent evolution affecting p.T474, with a subclone containing
a p.T474L mutation, a novel mutation we, to the best of our
knowledge, report clinically for the first time, and which leads to an
active kinase, similar to T474I. This mutation is present at very low
CCF but was confirmed by manual review using 3 orthogonal
methods (supplemental Figures 6, 7, and 9). The clinical signifi-
cance of multiclonal BTK mutations at very low CCF remains to be
determined but is common in patients who are progressing on
covalent BTKis, and suggests strong selection pressure leading to
convergent evolution. The predominance of 2 T474 mutations that
retain BTK activity in this patient suggest that the mechanism of
resistance here is associated with reactivation of the proximal BCR.

TheBTK p.L528Wmutation selected in 1 patient with CLL (CLL Pt 7)
during pirtobrutinib therapy has previously been reported at a
low CCF of 8% in a patient relapsing on ibrutinib, in patients on
zanubrutinib at progression (median VAF, 35%), and recently in 4
patients who progressed on pirtobrutinib.16,33,34 Computational
structural modeling has shown that the p.L528W mutation causes
steric hindrance and interferes with the binding of the covalent
inhibitors ibrutinib and zanubrutinib to BTK.16,35 Functional char-
acterization of this mutation by us and by Wang et al16 demon-
strates that this mutation inactivates BTK. We also see a p.C481R
clone persisting at a similar VAF at time of resistance; this mutation
is also inactivating. In a patient with CLL (CLL Pt 7), a third clone
carrying BTK p.C481S was observed at progression, which is
unexpected because pirtobrutinib maintains activity against BTK
p.C481S.36,37 Inspection of variants on IGV shows that p.L528W
and p.C481S do not appear on the same sequencing reads
(supplemental Figure 10A-B), indicating that they are not in the
same clone. The increase in the clone carrying BTK p.C481S
could be driven by another mutation, in particular the TP53
p.R196* mutation (supplemental Table 2). In this patient, we saw
striking multiclonality of TP53 mutations increasing over time,
consistent with clinical data that TP53 aberrancy also contributes
to BTKi resistance.38 Despite the predominance of the inactivating
mutations p.L528W and p.C481R in this patient, and similar to the
findings by Wang et al,16 the patient (CLL Pt 7) showed evidence
of intact and increased distal BCR signaling with elevated phos-
phorylation of AKT and ERK, suggesting an alternative mechanism
of activation, perhaps related to proximal bypass of BTK or the
scaffolding functions of BTK. Although very few patients have
progressed on pirtobrutinib to date, the identification of kinase-
dead BTK mutations suggests a novel mechanism of resistance
that needs to be elucidated to improve future therapeutic strate-
gies in CLL.20 Previous work has demonstrated that the SRC family
kinase HCK can induce BTK, phosphatidylinositol 3-kinase/AKT,
and MAPK/ERK signaling.39 Furthermore, kinase-dead BTK
p.C481F/Y mutants have been reported to activate BCR signaling
by uniquely recruiting HCK and forming BTK/HCK heterodimers
Figure 6 (continued) for 1 hour. Subsequently, the samples were washed with medium no

and mouse antichicken IgM. Representative western blots are shown in panels B-E. Quan

supplemental Figure 8. (F) Untransfected (WT B7.10) cells were treated with the indicated

IgM–containing medium. Results from duplicate experiments are shown in panel F.
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leading to phosphorylation of PLCγ2 and downstream BCR
signaling.40 Rationale therefore exists to determine whether a
similar mechanism is operative with the BTK mutants p.L528W and
p.M477I and this is currently under investigation.

In summary, we show that pirtobrutinib is a potent BTKi in vitro and
in vivo, regardless of mutations at C481, with novel multiclonal
second-site BTK mutations leading to resistance among patients
with preexisting BTK C481 mutations. Interestingly, many of the
second-site BTK mutations fail to activate BTK phosphorylation but
are still associated with downstream activation of pAKT and pERK;
the mechanism of this activation remains to be elucidated.
Furthermore, these mutations have occurred predominantly among
patients with preexisting C481X mutations; whether patients naïve
to covalent BTKis, or those exposed but without preexisting BTK
mutations, will demonstrate similar mechanisms of resistance
remains to be determined.
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