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Renal manifestations are the most common complications of sickle cell disease (SCD). Renal disease
starts during childhood and progresses further in adults.1 Approximately 30% of patients with SCD
develop chronic kidney disease (CKD), and 14% to 18% of them progress to end-stage kidney dis-
ease.2 Risk of CKD is 3-fold higher in patients with SCD than in the general population, yet early CKD
diagnosis remains a challenge because of impaired urine concentration and glomerular hyperfiltration. In
clinical practice, CKD screening methods are based on proteinuria and estimated glomerular filtration
rate (eGFR) assessments. Proteinuria is often underdetected because of urine concentration defects,
and eGFR calculation is complicated by increased glomerular filtration. The CKD-EPI (Chronic Kidney
Disease Epidemiology Collaboration) equation overestimates glomerular filtration rate by almost 45 ml/
min per 1.73 m2.3 Thus, there is an urgent need to find specific biomarkers for the early detection of
CKD in patients with SCD. Recent studies identified several potential urinary biomarkers of CKD in
patients with SCD, including ceruloplasmin,4 orosomucoid,5,6 and kringle domain–containing protein.7

However, all these biomarkers demonstrate only moderate sensitivity and specificity for the detection of
early stages of CKD.

Soluble urokinase-type plasminogen activator receptor (suPAR), a circulating form of a glycosyl phos-
phatidylinositol (GPI) membrane-anchored urokinase-type plasminogen activator receptor (uPAR), has
recently emerged as a sensitive biomarker and a potential risk factor for CKD progression.8-10 Membrane-
associated phospholipase C and secreted phospholipase D cleave GPI, releasing the full-length suPAR
from the membrane.11,12 Both uPAR and suPAR can be cleaved by a variety of proteases, including
cathepsin G, neutrophil elastase, plasmin, and urokinase-type plasmin activator (uPA) that will generate
suPAR proteolytic fragments.13 suPAR fragments may induce podocyte foot effacement via activation of
αvβ3 integrin leading to the development of proteinuria and kidney disease.14 A recent study that compared
individuals with sickle cell trait and those without the trait, showed a strong association between elevated
plasma suPAR (PsuPAR) levels and eGFR decline in carriers of the sickle cell trait.15 However, neither the
mechanism of suPAR increase nor the association of suPAR levels with renal function in SCD has been
investigated so far. Here, to the best of our knowledge, we have shown for the first time that circulating
suPAR levels were elevated in SCD plasma. uPAR expression was increased in the activated peripheral
bloodmononuclear cells (PBMCs), collected from patients with SCD andmacrophages differentiated from
THP-1 cells, treated with hemoglobin S (HbS). PsuPAR levels positively correlated with stages of CKD and
demonstrated high sensitivity and specificity in differentiatingCKD stages 2 to 5 from stage 1with a suPAR
cutoff level of 3.75 ng/ml. The study was approved by the review board of Howard University, and all
participants provided written informed consent before the sample collection.

First, we measured PsuPAR levels in 44 patients with SCD without kidney disease in steady state and
8 patients without SCD as healthy control participants. We found significantly elevated PsuPAR levels
in the SCD group compared with the control group (3.375 ± 0.1222 ng/ml, n = 44 for SCD vs 2.688 ±
0.2216 ng/ml, n = 8 for control participants, P = .0274; Figure 1A). No differences were found in
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Figure 1. PsuPAR levels correlate with stages of CKD in patients with SCD. (A) PsuPAR levels for patients with SCD without CKD (n = 44) and patients without SCD as

healthy control participants (n = 8). Results for each patient and means for groups are shown. (B) PLAUR expression determined by RNA-seq in activated PBMCs collected from

patients with SCD (n = 9) and non-SCD healthy control participants (n = 9). (C) PLAUR expression determined by RNA-seq in THP-1–derived macrophages treated with either

sickle (HbS) or healthy (HbA) human hemoglobin for 24 hours (n = 2). (D) Quantification of immunofluorescent (IF) staining of uPAR in THP-1–derived macrophages treated with

mutated HbS or normal hemoglobin (HbA) for 72 hours. 4′ , 6-diamidino-2-phenylindole (DAPI) is used for nuclear staining. Results are normalized for DAPI (n = 3). (E) GPLD1

expression determined by RNA-seq in PBMCs collected from patients with SCD (n = 6) and patients without SCD as healthy control participants (n = 6). (F) Plasma uPA activity

determined by enzyme-linked immunosorbent assays in patients with SCD (n = 13) and healthy control participants (n = 10). (G) Pearson correlation analysis of plasma log2

(PsuPAR) with log2 (eGFR) in patients with SCD (n = 77). (H) Pearson correlation analysis of urine log2 (UsuPAR/CRE) with log2 (eGFR) in patients with SCD (n = 44).

(I) Pearson correlation analysis of plasma log2 (PsuPAR) with CKD stages in patients with SCD (n = 77). (J) Pearson correlation analysis of urine log2 (UsuPAR/CRE) with CKD

stages in patients with SCD (n = 44). (K) Receiver operating characteristic analysis of PsuPAR shown for patients with SCD with stages 1 (n = 18) vs stages 2 to 4 (n = 10).

Correlation and receiver operating characteristic were performed using GraphPad Prism 6. Results are shown as mean ± standard deviation. P < .05 was considered statistically

significant. AUC, area under the curve; CRE, creatinine; MFI, mean fluorescence intensity; PsuPAR, plasma suPAR; UsuPAR, urine suPAR.
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Table 1. Cohort demographic characteristics and renal function

Characteristic SCD Control

Total, n 77 10

Genotype*

S-beta 13 (10)

SC 19.5 (15)

SS 67.5 (52)

AA 0 (0) 100 (10)

Gender*

Female 53.2 (41) 50 (5)

Male 46.8 (36) 50 (5)

Race*

African American 96.1 (74) 60 (6)

Age, y

Median (range) 42.5 (18-67) 36 (30-50)

Prevalence of CKD* 36.3 (28) 0 (0)

Prevalence of CKD by stage†

Stage 1 64.3 (18/28)

Stage 2 14.3 (4/28)

Stage 3 17.9 (5/28)

Stage 4 0 (0/28)

Stage 5 3.6 (1/28)

Prevalence of CKD by age (years)†

<25 35.7 (5/14)

25-44 30 (12/40)

45-60 50 (8/16)

>60 42.8 (3/7)

Prevalence of CKD by gender†

Female 34.1 (14/41)

Male 38.9 (14/36)

*Data are shown as percentage (number of patients).
†Data are shown in percentage (number of patients with CKD/total number of patients in

the group).
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suPAR levels between female and male patients with SCD
(supplemental Figure 1). uPAR is expressed in various cells,
including activated lymphocytes, monocytes, and macro-
phages.16,17 We hypothesize that uPAR expression is higher in
SCD PBMCs. We isolated total RNA from PBMCs obtained from 6
patients with SCD and 6 age- and gender-matched healthy control
paticipants and performed RNA sequencing (RNA-seq; Illumina,
San Diego, CA). Expression analysis of PLAUR gene that encodes
uPAR, using DESeq2-generated gene counts (supplemental
Figure 2A) and real-time reverse transcription polymerase chain
reaction (supplemental Figure 2B), did not show a significant dif-
ference between SCD and control. Moreover, flow cytometry
analysis also did not show significant differences in the percent of
uPAR-positive cells and levels of uPAR expression between SCD
and control PBMCs (supplemental Figure 3). Persistent inflam-
mation, and lymphocytes and macrophage activation are common
in patients with SCD.18 Nonactivated lymphocytes do not express
uPAR, but activation with phytohemagglutinin or interleukin 2 (IL-2)
induces uPAR expression in T lymphocytes.19 We activated
PBMCs with phytohemagglutinin (0.5 μg/ml) for 48 hours followed
by IL-2 (10 U/ml) for 24 hours and performed RNA-seq analysis in
9 SCD and 9 control samples. Analysis of DESeq2-generated
gene counts showed significantly higher PLAUR expression
levels in activated SCD PBMCs compared with activated PBMCs
from healthy patients (P = .0007, n = 18; Figure 1B). Intravascular
hemolysis, a common pathology of SCD, releases hemoglobin into
circulation. Hemoglobin activates inflammasome in macrophages
causing IL-1β production.20 IL-1β stimulates expression of uPAR in
different cells including human monocytes.21 To test whether HbS
increases uPAR levels in macrophages, human THP-1 monocytic
cell line was differentiated into macrophages with phorbol 12-
myristate 13-acetate (25 nM, 72 hours). Macrophages were
treated with either purified HbS or normal human HbA (5 μM) for
24 hours, and total RNA was isolated. RNA-seq analysis followed
by DESeq2 showed a statistically significant trend toward
increased PLAUR expression after HbS treatment compared with
HbA treatment (P = .044; Figure 1C). Moreover, IF staining
showed a significant increase in uPAR expression on THP-1–
derived macrophages treated with HbS for 72 hours (P = .012;
Figure 1D; supplemental Figure 4).

suPAR is produced by phospholipases- and proteases-mediated GPI
cleavage. We analyze messenger RNA levels of uPAR-cleaving
enzymes using RNA-seq data from nonactivated PBMCs and found
significantly elevated levels of GPLD1 gene–expressing RNA that
encodes phospholipase D (P = 3.6 × 10−5; Figure 1E) in SCD sam-
ples. We further tested the activity of the serum proteases using
enzyme-linked immunosorbent assays. Activity of uPAwas significantly
higher in the plasma obtained from patients with SCD compared with
the control participants (P = .033; SCD, n = 16; control, n = 10;
Figure 1F). In contrast, no significant differences in the plasmin and
neutrophil elastase activity were found (supplemental Figure 4).

PsuPAR levels strongly correlate with the development of CKD.22

Next, we investigated whether suPAR levels correlated with kidney
function and stages of CKD in 77 patients with SCD. The cohort’s
demographic characteristics and renal function are shown in Table 1.
eGFR andCKD stagewere determined as described in supplemental
Data. We observed strong inversed correlation between plasma log2
(PsuPAR) and log2 (eGFR) (r = −0.5868, R2 = 0.3444, P < .0001;
Figure 1G). The correlation was more pronounced in males
1856 RESEARCH LETTER
(r = −0.7611, R2 = 0.5792, P < .0001) and less in females
(r = −0.3976, R2 = 0.1581, P = .0091; supplemental Figure 6). In
patients with kidney transplants from the general population, urine
suPAR (UsuPAR) correlates better than PsuPAR with recurrent kid-
ney disease.23 Thus, we tested a correlation between UsuPAR and
eGFR in SCD. Urine concentrations of suPAR were normalized by
urine creatinine (CRE). We observed weak positive correlation of
urine log2 (UsuPAR/CRE) with log2 (eGFR) (r = 0.2994, R2 =
0.0897, P = .0483; Figure 1H). In the general population, PsuPAR
levels also correlate with albuminuria.23 Although log2 (UsuPAR)
weakly correlated with log2 (ALB/CRE) (r = −0.1324, R2 = 0.01753,
P = .4281; supplemental Figure 7A), log2 (PsuPAR) showed no
correlationwith albuminuria in patients with SCD (r=−0.02677, R2 =
0.0007, P = .8715; supplemental Figure 7B).

Finally, analysis of the relationship between PsuPAR and UsuPAR
and CKD stages showed a strong positive correlation of log2
(PsuPAR) with stages of CKD (r = 0.4788, R2 = 0.2292, P <
.0001; Figure 1I). In contrast, log2 (UsuPAR) demonstrated a weak
inversed correlation with CKD stages (r = −0.2040, R2 = 0.4160,
9 MAY 2023 • VOLUME 7, NUMBER 9
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P = .1842; Figure 1J). A receiver operating characteristic analysis
showed high sensitivity and specificity to differentiate CKD stages
2 to 5 from stage 1 at suPAR cutoff level 3.75 ng/ml (sensitivity,
77.78%; 95% confidence interval [CI], 52.36-93.59; specificity,
90%; 95% CI, 55.5-99.75; area under the curve, 0.889; 95% CI,
0.7609-1.017; odds ratio, 7.77; Figure 1K).

In conclusion, we showed that activated SCD PBMCs, macro-
phages treated with HbS, and elevated phospholipase D and uPA
levels in SCD plasma might collectively contribute to higher Psu-
PAR levels in patients with SCD, and that suPAR strongly corre-
lates with eGFR and CKD progression in SCD. Thus, suPAR may
be considered for CKD diagnostic in SCD in the future. The limi-
tation of the study was the small cross-sectional cohort of partici-
pants. The APOL1 risk variants and hemoglobinuria were not
assessed in this study.
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